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Machine learning‑based 
analysis of regional differences 
in out‑of‑hospital cardiopulmonary 
arrest outcomes and resuscitation 
interventions in Japan
Yasuyuki Kawai *, Koji Yamamoto , Keita Miyazaki , Hideki Asai  & Hidetada Fukushima 

Refining out‑of‑hospital cardiopulmonary arrest (OHCA) resuscitation protocols for local emergency 
practices is vital. The lack of comprehensive evaluation methods for individualized protocols impedes 
targeted improvements. Thus, we employed machine learning to assess emergency medical service 
(EMS) records for examining regional disparities in time reduction strategies. In this retrospective 
study, we examined Japanese EMS records and neurological outcomes from 2015 to 2020 using 
nationwide data. We included patients aged ≥ 18 years with cardiogenic OHCA and visualized EMS 
activity time variations across prefectures. A five‑layer neural network generated a neurological 
outcome predictive model that was trained on 80% of the data and tested on the remaining 20%. 
We evaluated interventions associated with changes in prognosis by simulating these changes after 
adjusting for time factors, including EMS contact to hospital arrival and initial defibrillation or drug 
administration. The study encompassed 460,540 patients, with the model’s area under the curve 
and accuracy being 0.96 and 0.95, respectively. Reducing transport time and defibrillation improved 
outcomes universally, while combining transport time and drug administration showed varied 
efficacy. In conclusion, the association of emergency activity time with neurological outcomes varied 
across Japanese prefectures, suggesting the need to set targets for reducing activity time in localized 
emergency protocols.

Out-of-hospital cardiac arrest (OHCA) is a global health problem with poor  outcomes1,2. Although international 
resuscitation guidelines  exist3,4, countries and regions adapt them to their local emergency medical services 
(EMSs)5–8, resulting in fragmented protocols and challenges in identifying improvement measures across regions. 
It remains unclear whether interventions associated with improved outcomes in one region will be effective in 
another.

Therefore, this study aimed to use machine learning to analyze emergency activity records from 47 Japanese 
prefectures to identify regional differences in time reduction strategies associated with improved outcomes. 
We hypothesized that targets for reducing EMS activity time would vary regionally owing to different adapted 
protocols.

We previously reported the potential of machine learning in predicting neurological outcomes from EMS 
activity records in a region that followed a single  protocol9 but did not consider its generalizability in other 
regions. Our study extends this research by analyzing records across multiple Japanese regions with different 
protocols.

We developed a machine learning model to predict neurological outcomes using the 47 prefectures as predic-
tors in the Utstein-style EMS records. Subsequently, we visualized and compared the association of increasing 
or decreasing EMS activity time with outcomes for each prefecture.
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Methods
Study design
We conducted a retrospective study utilizing prospectively recorded Japanese Utstein-style EMS activity records. 
The Ethics Committee of Nara Medical University approved the study (No. 3353), and the requirement for 
informed consent was waived owing to the use of anonymized records. This study was conducted in accordance 
with the tenets of the Declaration of Helsinki.

Study population and data collection
Japan has an aging population as 28.9% of its 130 million people are aged > 65  years10. The country consists of 47 
prefectures with varying population densities of 65.4–6,399.5 individuals/km2. EMSs respond to all emergency 
calls and transport approximately 125,000 patients with OHCA to hospitals  annually11. Emergency protocols, 
based on the Japanese Resuscitation Council’s Resuscitation  Guidelines12 and revised every 5 years, are developed 
and implemented by 250 regional health managers. Each medical control region is supervised by a council estab-
lished in each prefecture, tailoring protocols to local  conditions13–15. EMS activities are recorded in the Utstein 
style and verified by the medical control council, and all records are collected annually by the Fire and Disaster 
Management  Agency11. Our analysis included prehospital records of patients with OHCA resuscitated by EMS 
and transported to hospitals in 47 prefectures between 2015 and 2020, excluding patients aged < 18 years and 
those with non-cardiogenic cardiopulmonary arrest to reduce pathology variability.

Investigating Japanese EMS practices
In Japan, EMS is activated via a Communications Command Center upon receiving emergency calls. Bystand-
ers may be instructed to administer cardiopulmonary resuscitation (CPR) over the telephone if cardiac arrest is 
suspected. Each ambulance includes a team of three, often featuring emergency life-saving technicians capable of 
advanced airway management and adrenaline administration for OHCA, under online medical control supervi-
sion. Additionally, hospital destinations are determined during field operations, and all patients, barring those 
with evident signs of death, are transported to a hospital.

Data collection and pre‑processing
We employed 23 factors and prefecture numbers from the Utstein-style EMS activity records as predictors, 
including county number, age, year and month of onset, bystander type, initial rhythm, number of defibrillations, 
number of adrenaline boluses administered, and elapsed time of each activity. Notably, the prefecture number 
was treated as a continuous variable due to its sequential allocation from north to south. This approach aimed to 
capture potential spatial correlations between adjacent prefectures. We also conducted a similar analysis using 
one-hot encoding for the prefecture numbers, and the outcomes did not contradict the results obtained when 
treating the prefecture number as a continuous variable. Categorical data were one-hot encoded. Remarkably, in 
the case of missing data, we refrained from substituting them with any particular value. Instead, the data miss-
ingness was coded as a separate category, which was incorporated into our analysis as a separate data element. 
Selected continuous variables were standardized using z-score normalization, a method that confers advantages 
in machine learning algorithms such as neural networks by aiding gradient descent convergence and mitigat-
ing issues related to weight initialization and gradient problems. Time factors, which were initially considered 
continuous variables, were one-hot encoded as categorical  data16 because of their non-linear relationship with 
prognosis in cardiopulmonary resuscitation. The time factors were measured in minutes and thus represented 
as 1, 2, 3, 4, … minutes.

Cases in which a specific intervention, such as defibrillation or drug administration, was not performed 
were also considered. These were coded as “no intervention” and incorporated into the contact-to-intervention 
column, allowing the model to reflect a comprehensive range of patient experiences. These steps resulted in 249 
features (see Supplementary Table S1). Subsequently, we constructed a machine learning model to predict good 
neurological outcomes 1 month after cardiac arrest, based on the cerebral performance category (CPC)  score17—a 
binary classification (Yes/No), with CPC1/2 signifying good neurological outcome and CPC3-5 indicating poor 
neurological outcome—sourced from the Utstein records.

Dataset selection and predictive model development
We stratified and randomly split the training and test datasets using an 8:2 ratio based on CPC1/2 to ensure a 
consistent ratio for predictive model construction. The prediction model was built using the neural network with 
the best average class sensitivity after several machine learning model trials. The compared methods included 
logistic regression, support vector machine, decision tree, random forest, and  LightGBM9. To balance model 
bias (underfitting) and variance (overfitting), we applied a stratified cross-validation method (five-fold) using 
CPC1/2, along with batch normalization and dropouts in each neural network layer. The model’s accuracy pla-
teaued after increasing the number of layers to five because of which we used a five-layer network to optimize 
learning costs. The sigmoid function served as the activation function and binary cross-entropy served as the 
loss  function18. We measured model performance using area under the receiver operating characteristic curve 
(AUROC) and accuracy during training.

Imbalanced datasets significantly affect minority class performance. To address misclassification, we simu-
lated based on predicted CPC1/2 numbers and employed class weighting during training to balance sensitivities, 
considering trade-offs. Our model aimed to maximize the majority class (CPC3–5) sensitivity without excessively 
reducing minority class (CPC1/2) sensitivity. We set CPC1/2 sensitivity at 80% and tested weights from 1 to 100 
in 0.1 increments to optimize CPC3-5 sensitivity.
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Additional training parameters included a batch size of 1,024,100 epochs, a learning rate of 0.001, and Adam 
optimizer. We conducted training using Python version 3.8.5 (Python Software Foundation, Beaverton, OR, USA).

Adjusting time parameters in the simulation method
We assessed the association of EMS activity duration with predicted CPC1/2 counts by simulating the constructed 
prediction model on a test dataset (n = 92,108), containing all previously split prefectures from the training set. 
The simulation methodology involved three time factors: elapsed time from EMS arrival to hospital arrival (a), 
EMS arrival to first defibrillation (b), and EMS arrival to first drug administration (c).

Previous studies have shown that these temporal factors are important prognostic predictors of EMS activ-
ity  time19–26. For example, shorter time from EMS arrival to  defibrillation19,25 and from EMS arrival to drug 
 administration20–25 are associated with better survival and improved neurological outcomes in OHCA patients. 
The prognostic impact of EMS providers staying on scene and performing their activities has also been  reported26. 
Patients with non-shockable initial rhythm were excluded for (b), and those with EMS-witnessed cardiac arrest 
were excluded for (c). Time factors increased or decreased by − 5 to + 5 min for defibrillation and drug admin-
istration, and from − 5 to + 10 min for EMS arrival to hospital arrival time, in 1-min increments. We created a 
dataset adjusting each time factor in the test dataset and calculated the average predicted CPC1/2 score using 
the created prediction model. Then, we determined the percentage change in mean predicted CPC1/2 count 
to assess the association of time increase/decrease with the unadjusted data. We focused on percentage change 
relative to unadjusted data for a prefecture-specific analysis. A heat map visualized and evaluated the proportion 
of change between time adjustment and mean predicted CPC1/2 count.

Comparison of predicted changes of CPC1/2 counts across prefectures
We employed the same time adjustment method to estimate and visualize predicted CPC1/2 counts for the test 
dataset split by prefecture. We identified the time adjustments most associated with prognosis in each prefecture 
for the combinations (a) & (b) and (a) & (c), revealing treatment and EMS arrival to hospital arrival time adjust-
ments with the greatest potential to improve predicted prognosis.

Statistical Analyses
Patient characteristics are summarized as medians and interquartile ranges (IQRs) for continuous variables 
and counts and percentages for categorical variables. Additionally, the evaluation metric for the five models is 
expressed as means ± standard deviations. The standard deviations were calculated based on the variations in 
the evaluation metric across the five-fold cross-validation.

Results
We analyzed data from 753,910 patients with OHCA who received CPR by EMS during the study period. After 
applying the inclusion criteria (Supplementary Figure S1), 460,540 (61%) cases were included. Table 1 summa-
rizes patient characteristics, with a mean age of 81 (IQR: 70–88) years and 57% male individuals. Missing data 
were identified and newly coded for witness type information (7.2%), bystander chest compressions (21.5%), 
bystander ventilation (38.3%), and airway securement (0.002%). For the three time intervals, the adjusted per-
centages of patients were 100%, 9.2%, and 95.6% for EMS to hospital arrival, first defibrillation, and first drug 
administration, respectively.

Our predictive models (Fig. 1) were established based on the abovementioned features and showed remark-
able accuracy and sensitivity in predicting patient outcomes. Specifically, the AUROC curve and accuracy for 
the validation and test data were 0.96 ± 0.00 and 0.96 ± 0.00 as well as 0.96 ± 0.00 and 0.95 ± 0.00, respectively. 
Sensitivity of CPC1/2 and CPC3-5 for test data, including all prefectures, was 0.80 ± 0.01 and 0.96 ± 0.00, respec-
tively (Supplementary Figure S2, which further illustrates the model performance across all prefectures). This 
comprehensive sensitivity analysis supports the robustness of our findings, thereby affirming the validity of our 
subsequent, more detailed investigations.

When delving into the impact of EMS activity time factors, we gauged their combined prognostic influence on 
the test data, encompassing all prefectures. This analysis demonstrated compelling patterns, as presented in Fig. 2. 
Figure 2 (left) shows a heatmap adjusted for the EMS arrival to hospital arrival and first defibrillation times, with 
decreases and increases in both time factors having an additive relationship with the predicted CPC1/2 count. 
Similarly, Fig. 2 (right) is adjusted for the EMS arrival to hospital arrival and first drug administration times, with 
the prognostic association of EMS arrival to hospital arrival time being more substantial than the EMS arrival to 
drug administration time. However, our findings emphasize that the outcome association with both time factors 
combined is not just the monotonic influence of a single factor but an additive association of two factors over the 
time range. Intriguingly, we observed diverse changes ranging from -20% to + 30% in predicted CPC1/2 counts 
adjusted for the EMS arrival to hospital arrival time and EMS arrival to first defibrillation time. This range was 
larger than the changes in predicted CPC1/2 counts adjusted for the EMS arrival to hospital arrival time and 
EMS arrival to first drug administration time, which was − 10 to + 5%.

The Figs. 3 and 4 display simulation results for representative prefectures, while Supplementary Figures S3 
and S4 provide an animated sequence of results for all prefectures. Reducing the time to first defibrillation con-
sistently increased the predicted CPC1/2 count across all prefectures, whereas longer EMS arrival to hospital 
arrival time had the opposite association (Fig. 3). However, the association of drug administration and EMS 
arrival to hospital arrival time with patient outcomes varied among prefectures. For example, in the prefecture 
shown in Fig. 4 (left), changes in drug administration time did not influence the predicted CPC1/2 count, but a 
decrease in EMS arrival to hospital arrival time increased it. In contrast, in the prefecture shown in Fig. 4 (right), 
earlier drug administration improved prognosis more than shorter EMS arrival to hospital arrival time. These 
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variances underscore the importance of understanding the local context when interpreting the associations of 
these factors with predicted outcomes.

Discussion
In this study, we examined Japanese EMS records and neurological outcomes from 2015 to 2020 using nationwide 
data. The study provided valuable insights into the association between EMS activity time and predicted neuro-
logical outcomes of patients with OHCA using a machine learning model that accounts for regional variations 

Table 1.  Patient background characteristics. IQR interquartile range; EMS emergency medical service; 
VF ventricular fibrillation; VT ventricular tachycardia; PEA pulseless electrical activity; ROSC return of 
spontaneous circulation; CPC cerebral performance category. Continuous variables are presented as median 
(IQR). Categorical variables are presented as n (%).

Variables Group

Overall

n = 460,540

Age, years 81 [70, 88]

Male sex, n 264,009 (57.3)

Onset year, n

2015 72,949 (15.8)

2016 74,329 (16.1)

2017 77,587 (16.8)

2018 78,738 (17.1)

2019 78,189 (17.0)

2020 78,748 (17.1)

Witness, n 186,032 (40.4)

Type of witness, n

Family 92,027 (20.0)

Friend 6,700 (1.5)

Colleagues 6,139 (1.3)

Passengers 6,405 (1.4)

Others 40,670 (8.8)

Firefighter 823 (0.2)

Paramedic 14,987 (3.3)

Emergency lifesaver 19,770 (4.3)

Unknown 33,195 (7.2)

Bystander, n 235,513 (51.1)

Bystander chest compression, n
231,842 (50.3)

Unknown 98,787 (21.5)

Bystander rescue breathing, n
28,213 (6.1)

Unknown 176,558 (38.3)

Bystander defibrillation, n 9,891 (2.1)

EMS with emergency lifesaver, n 455,658 (99)

EMS with medical doctor, n 14,712 (3)

Initial rhythm, n

VF 41,115 (9)

Pulseless VT 1,295 (0.3)

PEA 97,913 (21)

Asystole 300,063 (65)

Other 20,154 (4)

Defibrillation, n 60,068 (13)

Time from contact to first defibrillation, min 2 [1, 8]

Defibrillation frequency, times 0 [0, 0]

Medication administered, n 107,962 (23)

Time from contact to first administration, min 14 [10, 19]

Administration frequency, times 0 [0, 1]

Airway management with instruments, n
Yes 397,646 (86)

Unknown 2,321 (0.5)

Time from call to contact, min 9 [7, 11]

Time from contact to arrival, min 23 [18, 30]

ROSC, n 47,026 (10)

CPC ½, n 20,618 (5)
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in emergency medical protocols. Interestingly, the findings suggested that the optimal interventions to improve 
EMS performance may differ depending on a region’s medical background and EMS protocols. This highlighted 
the importance of tailoring interventions to the specific needs of each region rather than using a one-size-fits-all 
approach.

Prediction of neurological outcome after cardiac arrest by machine learning reportedly improves accuracy 
compared with traditional  methods27–30. The novelty of this study lies in our independent adjustment of the 
balance between the majority and minority groups, which was essential because our objective was focused on 
the number of predictions for a good neurological prognosis. However, even after this adjustment, we obtained 
AUROCs comparable to those of previous studies. This finding underscores the robustness and reliability of 
our methodology. Developing models with high predictive accuracy and simulating the association of multiple 
intervention factors is a promising approach for assessing the prognostic association of different combinations of 
interventions. Previous studies to improve resuscitation have only accepted interventions with positive associa-
tions, based on evidence from statistical  methods31–33. Simulation by machine learning models can theoretically 
change any parameter within the range of the training  data30,34,35. Simulation can also be done at any time, as 
long as the data set is available, and is less susceptible to social changes, such as those arising from coronavirus 
pandemics. In this study, conducting and comparing this simulation on a county-by-county basis, which were 
considered to have different backgrounds, led us to conclude that the time-saving factors that are expected to 
improve prognosis the most, differ from county to county.

However, as shown in a previous  study9, the range of possible simulations is limited by the diversity of the data 
set because of which a large data set must be collected to increase the diversity. The Utstein style is widely used 
worldwide, and therefore, seems to be suitable for building other specific and general models using data from dif-
ferent  backgrounds36. In Japan, especially, all patients receiving emergency services treatment are recorded using 
the Utstein style, enabling comprehensive data  collection37. By recoding missing values as machine learning fea-
tures, the risk of selection bias due to missing values is mitigated. In this study, only 0.3% of cases were excluded 
owing to missing or negative time series data or activity time longer than 24 h (Supplementary Figure S1).

The simulations conducted in this study revealed that the association of EMS arrival to hospital arrival time 
and medication on outcomes varied among prefectures. These differences may be attributed to variations in 
EMS protocols, technical proficiency, and geographical conditions, but this is unknown as this study did not 
aim to identify these factors. However, by identifying the interventions that have the strongest association with 
outcomes in a particular region, these findings could inform the development of tailored interventions that are 
most suitably associated with positive outcomes for that region. Furthermore, it would be possible to suggest 
the time reductions that should be prioritized if the target of the activity is time reduction. Overall, this study 
underscores the importance of taking a region-specific approach to improve EMS performance and highlights 
the potential of machine learning models to identify the interventions exhibiting the strongest association with 
desired outcomes for a given region.

All datasets

Stratified data split by CPC1/2

20%80%

Five-fold stratified cross-validation

model_1

model_2

model_3

model_4

model_5

Training data
Validation data
Test data

Test data were evaluated with 
each constructed model

Tuning for 80% sensitivity for CPC1/2 and highest sensitivity for CPC3-5

Five-layer neural network model

Figure 1.  Overview of data splitting and stratified cross-validation methods and the neural network-based 
machine learning model. The model was developed using the stratified cross-validation method with CPC1/2. 
The machine learning model consisted of a five-layer neural network. AUROC—area under the receiver 
operating characteristic; BN—batch normalization; CPC—cerebral performance category.
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Limitations
Our study has some limitations that should be addressed in future research. First, the predictors were restricted 
to data from the Utstein-style EMS activity records, which only provided categorical data on activity absence or 
presence and continuous data on time. Therefore, the technical quality of EMS activities and interventions at the 
destination hospitals were not included as predictors, potentially limiting the accuracy of the neurological out-
come prediction models. Additionally, geographical factors, such as access to emergency services and hospitals, 
were not considered. Second, the potential range of simulations was confined to the range of activities performed 
by EMS, preventing the evaluation of the association of increased or decreased time for unimplemented activities. 
A diverse training dataset encompassing a wide range of EMS activities is required to address this limitation. 
Furthermore, the analyzed EMS activity records from 2015 to 2020 may not reflect the latest life-saving practices. 
In addition, as this study focused on EMS activities in Japan, its findings may not be directly generalizable to other 
countries. Third, although the study compared the association of EMS activity time at a prefectural level, EMS 
protocols might have been developed for more subdivided regions. This study was based on the smallest divi-
sion where information could be collected (i.e., prefectures). More detailed regional comparisons could suggest 
emergency activity targets for individual protocols tailored to each region, potentially leading to a general model 
applicable to individual hospitals with unavailable EMS data. Finally, the feasibility of the simulation results 
should be acknowledged. Although machine learning models can provide valuable insights, their association 
with desired outcomes in real-world clinical settings may vary due to factors, such as patient characteristics and 
provider’s expertise. To improve the applicability and clinical utility of these models, future research should focus 
on validating them in real-world settings and addressing potential barriers to implementation.

Conclusions
This study highlights the regional differences in EMS activity time targets and their implications in tailored pre-
hospital care. The study findings may help enhance in EMS protocols and improve patient outcomes. However, 
it is crucial to address the identified limitations to strengthen our recommendations.

Figure 3.  Example of the association of changes in EMS arrival to hospital arrival time and defibrillation time 
with predicted CPC1/2. No adjustments are represented by square boxes. The color bar indicates the increase or 
decrease in predicted CPC1/2 relative to the unadjusted case. The figure demonstrates a consistent observation 
across all 47 prefectures that a decrease in the time intervals between EMS arrival to hospital arrival time and 
to first defibrillation time is anticipated to enhance patient prognosis. The observed changes spanned from − 20 
to + 30 and − 10 to + 5. EMS—emergency medical service; CPC—cerebral performance category.
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