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Abstract: Sleep apnea syndrome is characterized by recurrent episodes of oxygen desaturation
and reoxygenation (intermittent hypoxia [IH]), and it is a known risk factor for hypertension. The
upregulation of the renin-angiotensin system has been reported in IH, and the correlation between
renin and CD38 has been noted. We exposed human HEK293 and mouse As4.1 renal cells to
experimental IH or normoxia for 24 h and then measured the mRNA levels using a real-time reverse
transcription polymerase chain reaction. The mRNA levels of Renin (Ren) and Cd38 were significantly
increased by IH, indicating that they could be involved in the CD38-cyclic ADP-ribose signaling
pathway. We next investigated the promotor activities of both genes, which were not increased by
IH. Yet, a target mRNA search of the microRNA (miRNA) revealed both mRNAs to have a potential
target sequence for miR-203. The miR-203 level of the IH-treated cells was significantly decreased
when compared with the normoxia-treated cells. The IH-induced upregulation of the genes was
abolished by the introduction of the miR-203 mimic, but not the miR-203 mimic NC negative control.
These results indicate that IH stress downregulates the miR-203 in renin-producing cells, thereby
resulting in increased mRNA levels of Ren and Cd38, which leads to hypertension.

Keywords: CD38; cyclic ADP-ribose; intermittent hypoxia; juxtaglomerular cell; miR-203;
renin-angiotensin system; sleep apnea syndrome

1. Introduction

Sleep apnea syndrome (SAS) is a highly prevalent sleep disorder characterized by
the repetitive partial or complete collapse of the pharynx during sleep. It induces apnea
and hypopnea, which often result in decreased oxygen saturation. A growing body of
evidence suggests that SAS acts through recurrent episodes of oxygen desaturation and re-
oxygenation (intermittent hypoxia (IH)) to cause hypertension [1]. The pathophysiology of
hypertension in cases of SAS is complex and is dependent on various factors. Among those
factors, the upregulation of the renin-angiotensin system (RAS) is of critical importance.

RAS plays an important role in the regulation of both the extracellular fluid volume
and the blood pressure. Increasing activity on the part of the RAS contributes to hyperten-
sion in SAS patients [2]. Several reports indicate that the components of the RAS, such as
renin (Ren), are increased in an environment characterized by IH [3]. Ren is an essential
enzyme in relation to the regulation of the RAS. It is secreted by the renal juxtaglomerular
(JG) cells that are located in the afferent arteriole of the glomerulus. Ren is regarded as
a primary determinant of the activity of the RAS because it accelerates the RAS through
converting angiotensinogen into angiotensin I. Although the upregulation of Ren by IH
has been reported [4], its gene expression mechanism remains unclear.
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In addition, several studies have suggested the regulation of Ren to be controlled by
the CD38-cyclic ADP-ribose (cADPR)-mediated signaling pathway [5]. cADPR serves as a
second messenger in terms of controlling the intracellular Ca2+ concentrations. It activates
the Ca2+ release from the endoplasmic reticulum via the ryanodine receptor (RyR)s [6–9].
CD38 is a type II glycoprotein that contributes to the synthesis of cADPR [10–12]. Several
studies have described how the CD38-cADPR-mediated signaling pathway is related to
the pathogenesis of various diseases [11–13]. It has also been reported that the pathway
affects renin production and release in a prototype of the JG cells, namely As4.1 [14]. We
focused on CD38 as a contributor to the regulation of Ren expression in IH.

The present study sought to investigate the gene expression of both Ren and CD38, as
well as their regulation mechanisms in response to IH stress in Ren-producing cells.

2. Results
2.1. Gene Expression Levels of Ren and Cd38 in Human and Mouse Renin-Producing Cells Were
Increased by IH

We exposed human embryonic renal cell-derived HEK293 cells to normoxia or IH
for 24 h. Following the IH treatment, we measured the mRNA levels of angiotensinogen
(AGT), angiotensin II receptor type 1 (AGTR1), angiotensin II receptor type 2 (AGTR2), renin
(REN), and CD38 by means of a real-time reverse transcription polymerase chain reaction
(RT-PCR). We found that the mRNA levels of AGT, REN, AGTR1, AGTR2, and CD38 were
all upregulated by IH (Figure 1). The mRNA levels of the components of both RAS and
CD38, which have previously been reported to be related to renin expression [5,14,15],
were significantly increased by IH.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 2 of 16 
 

 

(JG) cells that are located in the afferent arteriole of the glomerulus. Ren is regarded as a 
primary determinant of the activity of the RAS because it accelerates the RAS through 
converting angiotensinogen into angiotensin I. Although the upregulation of Ren by IH 
has been reported [4], its gene expression mechanism remains unclear. 

In addition, several studies have suggested the regulation of Ren to be controlled by 
the CD38-cyclic ADP-ribose (cADPR)-mediated signaling pathway [5]. cADPR serves as 
a second messenger in terms of controlling the intracellular Ca2+ concentrations. It acti-
vates the Ca2+ release from the endoplasmic reticulum via the ryanodine receptor (RyR)s 
[6–9]. CD38 is a type II glycoprotein that contributes to the synthesis of cADPR [10–12]. 
Several studies have described how the CD38-cADPR-mediated signaling pathway is re-
lated to the pathogenesis of various diseases [11–13]. It has also been reported that the 
pathway affects renin production and release in a prototype of the JG cells, namely As4.1 
[14]. We focused on CD38 as a contributor to the regulation of Ren expression in IH. 

The present study sought to investigate the gene expression of both Ren and CD38, 
as well as their regulation mechanisms in response to IH stress in Ren-producing cells. 

2. Results 
2.1. Gene Expression Levels of Ren and Cd38 in Human and Mouse Renin-Producing Cells 
Were Increased by IH 

We exposed human embryonic renal cell-derived HEK293 cells to normoxia or IH for 
24 h. Following the IH treatment, we measured the mRNA levels of angiotensinogen (AGT), 
angiotensin II receptor type 1 (AGTR1), angiotensin II receptor type 2 (AGTR2), renin (REN), 
and CD38 by means of a real-time reverse transcription polymerase chain reaction (RT-
PCR). We found that the mRNA levels of AGT, REN, AGTR1, AGTR2, and CD38 were all 
upregulated by IH (Figure 1). The mRNA levels of the components of both RAS and CD38, 
which have previously been reported to be related to renin expression [5,14,15], were sig-
nificantly increased by IH. 
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The statistical analyses were performed using a Student’s t-test. 

Figure 1. The mRNA levels of AGT (A), AGTR1 (B), AGTR2 (C), REN (D), and CD38 (E) in the HEK293 cells subjected to
normoxia or IH for 24 h. The levels of the RAS mRNAs were measured by means of a real-time RT-PCR using β-actin as an
endogenous control. The data are expressed as the mean ± SE for each group of six independent experiments (n = 6). The
statistical analyses were performed using a Student’s t-test.

Next, we exposed mouse As4.1 JG cells to normoxia or IH for 24 h. Following the
treatment, we measured the mRNA levels of Agt, Agtr1, Agtr2, Ren, and Cd38 by means
of a real-time RT-PCR. As shown in Figure 2, the mRNA levels of Ren and Cd38 were
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significantly increased in the As4.1 JG cells in response to IH, although the Agt, Agtr1, and
Agtr2 levels were not.
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We further measured the level of Ren in the culture medium and the cellular Cd38
level by means of an enzyme-linked immunosorbent assay (ELISA) and an immunoblot
analysis, respectively. As shown in Figures 3 and 4, IH significantly increased the medium
Ren and cellular Cd38 levels in the As4.1 cells.
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Figure 3. Concentrations of Ren in the As4.1 cell culture medium. The As4.1 cells were subjected to
normoxia or IH conditions for 24 h. The medium Ren concentrations were measured by means of
an ELISA. The data are expressed as the mean ± SE for each group of six independent experiments
(n = 6). The statistical analyses were performed using a Student’s t-test.
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2.2. Downregulation of Cd38 Attenuated the Ren Increase in As4.1 Cells Treated with Small
Interfering RNA (siRNA) for Cd38

To investigate the mechanism of Ren expression in the As4.1 cells, the Cd38 gene was
knocked down by means of RNA interference. The expression levels of Ren and Cd38
were significantly increased by IH in the presence of scrambled RNA. In contrast, the
introduction of the siRNA for CD38 (siCd38) inhibited not only the IH-induced increases
in the mRNAs for Cd38, but also the Ren levels in the As4.1 cells (Figure 5). These results
indicated that the increases in the Ren levels observed in response to IH were caused by
the Cd38 expression levels.

2.3. 8-Bromo-cADPR (8-Br-cADPR), a Cell-Permeable Antagonist of cADPR, Suppressed the
Increases in the Ren and Cd38 Levels Induced by IH

To confirm the correlation between the Ren expression and the CD38-cADPR-mediated
signaling pathway, we added 8-Br-cADPR, the cADPR antagonist [9,16], into the As4.1
cell culture medium, and then subjected the cells to normoxia or IH for 24 h. Following
the IH stimulation, we measured the mRNA levels of Ren and Cd38 and determined that
the increases in the Ren and Cd38 mRNAs were suppressed (Figure 6). These results
indicated that the increases observed in the Ren levels in response to IH were induced by
the CD38-cADPR-mediated signaling pathway.

2.4. Gene Expression Levels of the Ryanodine Receptor (RyR)s Were Not Changed by IH

The RyRs (i.e., RyR1, cardiac-type RyR2, islet-type RyR2, and RyR3) are intracellular
Ca2+ release channels located on the endoplasmic reticulum. They represent important
components of the CD38-cADPR-mediated signaling pathway [7,9]. To determine the
involvement of the Ryr(s) in the elevation of Ren in response to IH, we measured the
mRNA levels of the Ryr(s) following IH treatment. The mRNA levels of the Ryr(s) were not
changed by IH (Figure 7). This result indicated that the elevation of Ren was not induced
by changes in the Ryr expression level.
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Figure 5. Effects of the siRNA against Cd38 on the IH-induced gene expression of Ren and Cd38. The
siRNA for Cd38 was transfected into the As4.1 JG cells and the cells were then subjected to IH or
normoxia for 24 h. The levels of the Ren and Cd38 mRNAs were measured via a real-time RT-PCR
using Rig/RpS15 as an endogenous control. The data are expressed as the mean ± SE for each group
of six independent experiments (n = 6). The statistical analyses were performed using a Student’s
t-test. No Cd38 mRNA was detected in the siCd38-introduced cells.
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Figure 6. The mRNA levels of Ren and Cd38 with or without the addition of the 8-Br-cADPR. There
is no difference in Ren mRNA between 8-Br-cADPR (-) group and 8-Br-cADPR (+) group (1.062-fold
increase in 8-Br-cADPR (+), P = 0.604). In contrast, the Cd38 mRNA in 8-Br-cADPR (+) was increased
1.816-fold vs. 8-Br-cADPR (-) (P = 0.0024). Although the mRNA levels of Ren and Cd38 were elevated
in response to IH without the 8-Br-cADPR (8-Br-cADPR (-) controls), the elevation of the mRNAs
disappeared following the addition of the 8-Br-cADPR (8-Br-cADPR (+)). The data are expressed as
the mean ± SE for each group of six independent experiments (n = 6). The statistical analyses were
performed using a Student’s t-test.
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2.5. Promoter Activities of Ren and Cd38 Were Not Increased by IH

To determine whether the IH-induced increases in the Ren and Cd38 mRNA levels were
caused by the activation of the transcription of the Ren/Cd38 genes, a 4127 bp fragment
containing 4094 bp of the mouse Ren promoter (−4094 ~ +33 of mouse Ren (L78789)) and a
4980 bp fragment containing 4888 bp of the mouse Cd38 promoter (−4888 ~ +92 of mouse
Cd38 (NC_000071.6)) were fused to the luciferase gene of pGL4.17 and then transfected
into the As4.1 JG cells. Following the IH stimulation, we measured the promoter activities
of the Ren and Cd38 and found that they were not changed (p = 0.5799 and p = 0.2114 in
the Ren and Cd38 promoters, respectively) by IH in the As4.1 cells (Figure 8). These results
strongly suggested that the gene expression of Ren and Cd38 in response to IH was not
regulated by transcription.

2.6. The miR-203 Level Was Significantly Decreased by IH

We considered it possible that the IH-induced upregulation of both Ren and Cd38
was controlled post-transcriptionally. Therefore, we searched for targeted microRNA
(miRNA) using the MicroRNA.org program (http://www.microrna.org/microrna/home.
do; accessed on 16 May 2020), which revealed that the Ren and Cd38 mRNAs have a
potential target sequence for miR-203. There were no other miRNA candidates targeting
both genes. We measured the miR-203 levels of the IH-treated cells by means of a RT-PCR
and found that the levels were significantly lower than those of the normoxia-treated cells
(p = 0.0398). There are a number of possible reasons why the miR-203 level was decreased
by IH, including (i) the fact that the mRNA levels of some enzymes involved in miRNA
biosynthesis/degradation are influenced by IH and (ii) the fact that the level of miR-203 is
specifically decreased by IH, either via decreased biosynthesis or enhanced degradation.
We measured the mRNA levels of both ribonuclease type III (Drosha) and endoribonuclease
Dicer (Dicer), which are known to be involved in the biosynthesis of miRNAs [17,18], and
found that their expression was unchanged by IH (Figure 9). These results suggested

http://www.microrna.org/microrna/home.do
http://www.microrna.org/microrna/home.do
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that miR-203 plays a key role in the post-transcriptional regulation of the mRNA levels of
Ren and Cd38. To investigate whether the Ren and Cd38 expression in response to IH is
regulated by miR-203, the miR-203 mimic and non-specific control RNA (miR-203 mimic
NC) were introduced into the As4.1 JG cells and then subjected to IH/normoxia exposure.
The mRNA levels of Ren and Cd38 were measured by means of a real-time RT-PCR.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 7. The mRNA levels of Ryr1 (A), islet-type Ryr2 (B), cardiac-type Ryr2 (C), and Ryr3 (D) in the 
As4.1 JG cells subjected to normoxia or IH for 24 h. In all cases, the mRNA levels were not elevated 
by IH (P = 0.7662, P = 0.0510, P = 0.1416, and P = 0.5868 in the Ryr1, islet-type Ryr2, cardiac-type Ryr2, 
and Ryr3, respectively). The data are expressed as the mean ± SE for each group of six independent 
experiments (n = 6). The statistical analyses were performed using a Student’s t-test. 

2.5. Promoter Activities of Ren and Cd38 Were Not Increased by IH 
To determine whether the IH-induced increases in the Ren and Cd38 mRNA levels 

were caused by the activation of the transcription of the Ren/Cd38 genes, a 4127 bp frag-
ment containing 4094 bp of the mouse Ren promoter (−4094 ~ +33 of mouse Ren (L78789)) 
and a 4980 bp fragment containing 4888 bp of the mouse Cd38 promoter (−4888 ~ +92 of 
mouse Cd38 (NC_000071.6)) were fused to the luciferase gene of pGL4.17 and then trans-
fected into the As4.1 JG cells. Following the IH stimulation, we measured the promoter 
activities of the Ren and Cd38 and found that they were not changed (p = 0.5799 and p = 
0.2114 in the Ren and Cd38 promoters, respectively) by IH in the As4.1 cells (Figure 8). 
These results strongly suggested that the gene expression of Ren and Cd38 in response to 
IH was not regulated by transcription. 

 
Figure 8. Promoter activities of Ren (A) and Cd38 (B) in the As4.1 JG cells. Reporter plasmids prepared by inserting the 
promoter fragments of Ren (−4094 ~ +33) and Cd38 (−4888 ~ +92) upstream of a firefly luciferase reporter gene in a pGL4.17 
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of six independent experiments (n = 6). The statistical analyses were performed using a Student’s t-test.
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Figure 9. The levels of the Drosha mRNA (A), Dicer mRNA (B), and miR-203 (C) of the As4.1 JG cells subjected to normoxia
or IH for 24 h. The levels of the Drosha and Dicer mRNAs and the miR-203 were measured by means of a real-time RT-PCR
using Rig/RpS15 (for the Drosha/Dicer) or U6 (for the miR-203) as an endogenous control. The data are expressed as the
mean ± SE for each group of six independent experiments (n = 6). The statistical analyses were performed using a Student’s
t-test.

As shown in Figure 10, we found that the IH-induced increases in the Ren and Cd38
mRNAs were abolished by the introduction of the miR-203 mimic but not by the introduc-
tion of the miR-203 mimic NC. These findings indicated that IH stress downregulates the
miR-203 level in mouse As4.1 JG cells, while the levels of the Ren and Cd38 mRNAs are
increased via the miR-203-mediated mechanism.



Int. J. Mol. Sci. 2021, 22, 10127 8 of 16
Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 10. Effects of the miR-203 mimic transfection on the Ren and Cd38 expression. The miR-203 
mimic (5′-GUGAAAUGUUUAGGACCACUAG-3′, 5′-AGUGGUCCUAAACAUUUCACUU-3′) 
and the non-specific control RNA (miR-203 mimic NC) (5′-UUCUCCGAACGUGUCACGUtt-3′, 5′-
ACGUGACACGUUCGGAGAAtt-3′) were synthesized by Nihon Gene Research Laboratories, Inc. 
(NGRL; Sendai, Japan). They were introduced into the As4.1 JG cells using Lipofectamine® 
RNAiMAX just before the IH/normoxia exposure, and the mRNA levels of Ren and Cd38 were meas-
ured by means of a real-time RT-PCR, as described in the Materials and Methods Section, using 
Rig/RpS15 as an endogenous control. The data are expressed as the mean ± SE for each group of six 
independent experiments (n = 6). The statistical analyses were performed using a Student’s t-test. 

3. Discussion 
SAS patients and their organs, tissues, and cells are exposed to IH but not to sustained 

hypoxia. Thus, we exposed JG cells, but not exposed JG cells, to IH by sustained hypoxia 
in this study and found that IH exposure induced increases in the Ren and Cd38 mRNA 
levels in mouse JG cells. We further examined the mechanisms by which IH upregulates 
the mRNA levels of both Ren and Cd38 and identified possible post-transcriptional 
miRNA-regulated mechanisms. 

Recent epidemiological research has demonstrated that SAS may be associated with 
various metabolic dysfunctions, including dyslipidemia, cardiovascular diseases, insulin 
resistance, and hypertension. Additionally, in pregnant women, SAS may be a risk factor 
of gestational hypertension [19,20] and preeclampsia [21–23]. The pathophysiology of hy-
pertension in relation to SAS is dependent on various factors, for example, the sympa-
thetic tone, peripheral vasoconstriction, altered baroreceptor reflexes, and increased RAS 
activity [1]. In particular, there are numerous reports concerning RAS activity in SAS pa-
tients. More specifically, in SAS patients, the RAS activity has been found to be increased, 
which may cause blood pressure elevation [2,24]. Regarding renin expression in hypoxia, 
acute hypoxia stimulates renin secretion and renin gene expression in vivo [25,26], but 
chronic hypoxia suppresses renin gene expression [27]. Meanwhile, the expression of Ren 
in patients with SAS remains controversial. Some studies have reported that the Ren ac-
tivity is not different between SAS patients and controls [28,29]. Conversely, several other 
studies have suggested that the Ren activity is higher in SAS patients than in controls [3]. 
In these studies, the severe SAS environment model could be associated with the higher 
Ren activity. According to our results, the mRNA levels of Ren were significantly higher 

Figure 10. Effects of the miR-203 mimic transfection on the Ren and Cd38 expression. The miR-
203 mimic (5′-GUGAAAUGUUUAGGACCACUAG-3′, 5′-AGUGGUCCUAAACAUUUCACUU-3′)
and the non-specific control RNA (miR-203 mimic NC) (5′-UUCUCCGAACGUGUCACGUtt-3′,
5′-ACGUGACACGUUCGGAGAAtt-3′) were synthesized by Nihon Gene Research Laboratories,
Inc. (NGRL; Sendai, Japan). They were introduced into the As4.1 JG cells using Lipofectamine®

RNAiMAX just before the IH/normoxia exposure, and the mRNA levels of Ren and Cd38 were
measured by means of a real-time RT-PCR, as described in the Materials and Methods Section, using
Rig/RpS15 as an endogenous control. The data are expressed as the mean ± SE for each group of six
independent experiments (n = 6). The statistical analyses were performed using a Student’s t-test.

3. Discussion

SAS patients and their organs, tissues, and cells are exposed to IH but not to sustained
hypoxia. Thus, we exposed JG cells, but not exposed JG cells, to IH by sustained hypoxia
in this study and found that IH exposure induced increases in the Ren and Cd38 mRNA
levels in mouse JG cells. We further examined the mechanisms by which IH upregulates
the mRNA levels of both Ren and Cd38 and identified possible post-transcriptional miRNA-
regulated mechanisms.

Recent epidemiological research has demonstrated that SAS may be associated with
various metabolic dysfunctions, including dyslipidemia, cardiovascular diseases, insulin
resistance, and hypertension. Additionally, in pregnant women, SAS may be a risk factor
of gestational hypertension [19,20] and preeclampsia [21–23]. The pathophysiology of
hypertension in relation to SAS is dependent on various factors, for example, the sym-
pathetic tone, peripheral vasoconstriction, altered baroreceptor reflexes, and increased
RAS activity [1]. In particular, there are numerous reports concerning RAS activity in
SAS patients. More specifically, in SAS patients, the RAS activity has been found to be
increased, which may cause blood pressure elevation [2,24]. Regarding renin expression in
hypoxia, acute hypoxia stimulates renin secretion and renin gene expression in vivo [25,26],
but chronic hypoxia suppresses renin gene expression [27]. Meanwhile, the expression of
Ren in patients with SAS remains controversial. Some studies have reported that the Ren
activity is not different between SAS patients and controls [28,29]. Conversely, several other
studies have suggested that the Ren activity is higher in SAS patients than in controls [3].
In these studies, the severe SAS environment model could be associated with the higher
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Ren activity. According to our results, the mRNA levels of Ren were significantly higher in
the IH condition (SAS model). This may be because our IH models imitated a more severer
SAS environment than that considered in previous reports involving SAS patients.

We also focused on Cd38 as a contributor to Ren expression. The mRNA levels of
both Cd38 and Ren were found to be increased in IH. Cd38 is related to Angiotensin II
activation and pathogenesis of cardiac hypertrophy and hepatic fibrosis [30,31]. Yi et al.
reported that the expression of Ren was controlled by the CD38-cADPR-mediated signaling
pathway in As4.1 cells [14]. To investigate the correlation between the expression of Cd38
and Ren, we added the siRNA for Cd38 to the As4.1 JG cells and found that the IH-induced
Ren expression was significantly suppressed by the addition of siCd38. Moreover, we
determined that the addition of 8-Br-cADPR suppressed the upregulation of both Ren and
Cd38 by IH. The mRNA levels of the Ryr(s) were unchanged by IH. These results indicated
that the upregulation of Ren in the IH condition could be caused by the upregulation of
Cd38 (Figures 1–4) and subsequent activation of the CD38-cADPR-mediated signaling
pathway in As4.1 JG cells.

Additionally, we investigated the mechanisms by which IH upregulates the mRNA
levels of Ren and Cd38. We found that the promoter activities of the genes were not
increased by IH, which suggested that the IH-induced upregulation of the Ren and Cd38
mRNAs is regulated during the post-transcriptional step. miRNAs are small non-coding
RNAs (~22 nucleotides in length) that modulate gene expression by either translational
suppression or the degradation of the mRNA through binding to the 3′-untranslated
regions of the target genes in a base-pairing manner [32]. They affect the stability of
their target mRNAs, resulting in changes in the amount of target mRNA, which is one
of the mechanisms associated with post-transcriptional regulation. To date, a number of
studies concerning the role of miR-203 have been performed in malignant neoplasms such
as chronic myeloid leukemia [33], breast cancer [34], cervical cancer [35] and renal cell
carcinoma [36], and IH-stimulated hepatocytes [37]. Several such studies have indicated
that miRNAs are involved in the regulation of many biological processes (migration,
metastasis, cell proliferation, apoptosis, chemosensitivity, etc.) in these various types
of cells.

A few studies have addressed the correlation between miRNAs and hypertension in
patients with SAS. For example, three plasma miRNAs (miR-378a-3p, miR-100-5p, and
miR-486-5p) have been found to predict the blood pressure responses to continuous posi-
tive airway pressure treatment in patients with resistant hypertension and SAS [38]. In case
of hypoxic pulmonary hypertension, miR-203 has been found to inhibit fibroblast growth
factor 2 (FGF2), thereby resulting in a reduction in hypoxic pulmonary hypertension [39].
However, these studies did not indicate the involvement of miR-203 in SAS patients’ hy-
pertension. In the present study, the decline of the miR-203 with a common target sequence
in the Ren and Cd38 mRNAs could have contributed to the worsening hypertension in the
IH condition induced by the upregulation of the Ren and Cd38 mRNAs.

In this study, the gene expression of Ren and Cd38 was increased via the downregu-
lation of the miR-203 level in the IH-treated JG cells. It is suggested that, in SAS patients,
the upregulation of Ren and Cd38 may induce hypertension, while miR-203 could play a
crucial role in the regulation of such gene expressions.

4. Materials and Methods
4.1. Cell Culture

The utilized mouse JG As4.1 cells were purchased from the American Type Cul-
ture Collection (Manassas, VA, USA). The As4.1 cells and human embryonic kidney-
derived HEK293 cells were grown in Dulbecco’s Modified Eagle Medium (FUJIFILM
Wako Pure Chemical Corporation, Osaka, Japan) containing 10% (v/v) fetal calf serum
(FCS), 100 units/mL penicillin G (FUJIFILM Wako), and 100 µg/mL streptomycin (FU-
JIFILM Wako), as described in prior studies [9,40,41]. The cells were exposed to either
normoxia (21% O2, 5% CO2, and balanced N2) or IH (70 cycles of 5 min sustained hy-
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poxia (1% O2, 5% CO2, and balanced N2) and 10 min normoxia) in a custom-designed,
computer-controlled incubation chamber attached to an external O2-CO2-N2 computer-
driven controller (O2 programmable control, 9200EX, Wakenyaku Co., Ltd., Kyoto, Japan),
as described in previous works [37,42–46]. We used this in vitro model of IH, which re-
sulted in fluctuations in the pressure of oxygen similar to the IH condition observed in
patients with severe SAS, to repeatedly exposed the cells to severe hypoxemia followed
by mild hypoxemia or normoxia (i.e., IH) [47]. We have previously reported that the
magnitude of the IH expressed by SpO2 fluctuated between 75% and 98% and 50% and
80% in patients with SAS [42,45,46], which was nearly equivalent to the medium condition
in the present study.

4.2. RT-PCR

The total RNA was isolated from the As4.1 and HEK293 cells using a RNeasy Plus
Cell Mini Kit (Qiagen, Hilden, Germany), while the cDNA was synthesized from total RNA
as a template using a High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems,
Foster City, CA, USA) as described in prior studies [37,43,48–59]. The real-time RT-PCR
was performed using an SYBR® Fast qPCR Kit (KAPA Biosystems, Boston, MA, USA) and
a Thermal Cycler Dice Real-Time System (Takara Bio, Kusatsu, Japan). All the PCR primers
were synthesized by Nihon Gene Research Laboratories, Inc. (NGRL; Sendai, Japan). The
primer sequences for each primer set are described in Tables 1 and 2. The RT-PCR was
performed with an initial step of 3 min at 95 ◦C, followed by 45 cycles of 3 s at 95 ◦C, and
then 20 s at 60 ◦C for the AGT, REN, ACE, AGTR1, AGTR2, CD38, and β-actin, as well as for
the mouse Agt, Ren, Ace, Agtr1, Agtr2, Cd38, Ryr1, islet-type Ryr2, cardiac-type Ryr2, Ryr3,
Rig/Rps15, Dicer, Drosha, miR-203, and U6. The RNA expression levels were normalized
according to the mRNA level of the β-actin in human mRNAs and the level of Rig/RpS15 in
mouse mRNAs, while the miR-203 level was normalized according to the U6 RNA level.

Table 1. PCR primers (human) for the real-time RT-PCR.

Target mRNA Primer Sequence

REN (NM_000537)
5′-AAATGAAGGGGGTGTCTGTGG-3′

5′-AAGCCAATGCGGTTGTTACGC-3′

CD38 (NM_001775)
5′-ACAAACCCTGCTGCCGGCTCTC-3′

5′-GCATCGCGCCAGGACGGTCT-3′

AGT (NM_001382817)
5′-AACTGGTGCTGCAAGGATCT-3′

5′-TCTCTCTCATCCGCTTCAAG-3′

AGTR1 (NM_000685)
5′-ATCCACCAAGAAGCCTGCAC-3′

5′-TGAAGTGCTGCAGAGGAATG-3′

AGTR2 (NM_000686)
5′-CCTCGCTGTGGCTGATTTACTCCTT-3′

5′-TTGCACATCACAGGTCCAA-3′

β-actin (NM_001101) 5′-GCGAGAAGATGACCCAGA-3′

5′-CAGAGGCGTACAGGGATA-3′

4.3. Measurement of Ren in the Culture Medium by ELISA

The cells were subjected to either normoxia or IH for 24 h. Then, the culture medium
was collected, and the Ren concentration was measured by using a Renin 1 (REN1)
Mouse ELISA Kit (Thermo Fisher Scientific, Waltham, MA, USA) according to the
supplier’s instructions.
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Table 2. PCR primers (mouse) for the real-time RT-PCR.

Target mRNA/miR Primer Sequence

Ren (NM_031192)
5′-CCTCTACCTTGCTTGTGGGATT-3′

5′-CTGGCTGAGGAAACCTTTGACT-3′

Cd38 (NM_007646)
5′-ACAGACCTGGCTGCCGCCTCTCTAG-3′

5′-GGGGCGTAGTCTTCTCTTGTGATGT-3′

Agt (NM_007428) 5′-CACCCCTGCTACAGTCCATT-3′

5′-GTCTGTACTGACCCCCTCCA-3′

Agtr1 (NM_177322) 5′-GGCTGGCATTTTGTCTGGATA-3′

5′-CTTTTCTGGGTTGAGTTGGTCT-3′

Agtr2 (NM_007429) 5′-AGCTTACTTCAGCCTGCATT-3′

5′-CAGCAACTCCAAATTCTTACACC-3′

Ryr1 (NM_009109) 5′-AAGTCCCACAACTTTAAGCG-3′

5′-TCTTCTTGGTGCGTTCCTG-3′

Islet-type Ryr2 (NM_023868) 5′-GACAGTCGAGCGTGTCCTGGGTATA-3′

5′-TGCTTAGAGAGTAGTTTGTGCCACA-3′

Cardiac-type Ryr2 (NM_023868) 5′-GACAGTCGAGCGTGTCCTGGGTATA-3′

5′-TGCTTAGAGAGTAGTTTGTGCCACA-3′

Ryr3 (NM_001319156) 5′-AGAAGAGGCCAAAGCAGAGG-3′

5′-GGAGGCCAACGGTCAGA-3′

Rig/RpS15 (NM_009091) 5′-ACGGCAAGACCTTCAACCAG-3′

5′-ATGGAGAACTCGCCCAGGTAG-3′

Dicer (NM_148948)
5′-ATGCAAAAAGGACCGTGTTC-3′

5′-CAAGGCGACATAGCAAGTCA-3′

Drosha (NM_001130149)
5′-CTCTTTCCCACCCAGTGCTA-3′

5′-TGGTCGTCGTAGTGCTTGAG-3′

miR-203 (NR_029590)
5′-TCCAGTGGTTCTTGACAGTTCA-3′

5′-GGTCTAGTGGTCCTAAACATTTC-3′

U6 (XR_003953458)
5´-CGCTTCGGCAGCACATATAC-3′

5′-AAATATGGAACGCTTCACGA-3′

4.4. Immunoblot Analysis

The immunoblot analysis was performed using an As4.1 cell extract (5 × 105 cells),
as described in previous studies [10,52,60], using an anti-Cd38 polyclonal antibody (Santa
Cruz Biotechnology, Santa Cruz, CA, USA) raised against a peptide fragment of mouse
Cd38 (residues 279–301 in [61]), an anti-β-actin monoclonal antibody (Sigma, St. Louis, MO,
USA) raised against Ac-Asp-Asp-Asp-Ile-Ala-Ala-Leu-Val-Ile-Asp-Asn-Gly-Ser-Gly-Lys,
and a SNAP id® 2.0 Protein Detection System (Merck Millipore, Burlington, MA, USA).
The band intensities were analyzed using ImageJ software (National Institute of Health,
Bethesda, MD, USA), as previously described [52,62,63].

4.5. RNA Interference

The siRNA directed against the mouse Cd38 was synthesized by NGRL. The sense
sequence of the siRNA for the mouse Cd38 was 5′-GGGCUACAUUGCUGAUGAUtt-3′

(corresponding to the 529–547 of NM_007646). The Silencer® Select scrambled siRNA was
purchased from Ambion and was used as a control. The transfection of the siRNA into
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the As4.1 cells was performed using the Lipofectamine® RNAiMAX Transfection Reagent
(Thermo Fisher Scientific, Waltham, MA, USA). The cells were each transfected with 5 pmol
each siRNA in a 24-well culture dish, as described in prior works [37,43,48,49,53–58].

4.6. Addition of 8-Br-cADPR

The As4.1 cells were adjusted at 2 × 105 cells/mL, and the 0.5 mL cell suspension was
seeded into each well (24-well plate). After they were incubated at 37 ◦C overnight, the
medium was replaced with fresh medium either containing 8-Br-cADPR (Sigma, St. Louis,
MO, USA; finally to 100 µM) or without 8-Br-cADPR for each well. The cells were then
further incubated at 37 ◦C in an IH/normoxia condition for 24 h. The cellular RNA
preparation and real-time RT-PCR were performed as described in Section 4.2.

4.7. Construction of Reporter Plasmids and Luciferase Assay

The reporter plasmids were prepared by inserting the promoter fragments of the
mouse Ren (−4094 ~ +33) and Cd38 (−4888 ~ +92) upstream of a firefly luciferase re-
porter gene in the pGL4.17 vector (Promega, Madison, WI, USA). The reporter plasmids
were then transfected into mouse the As4.1 cells using Lipofectamine® 3000 (Invitrogen,
Waltham, MA, USA), as previously described [54–56]. The cells were then exposed to
either 70 cycles/24 h of IH (mimicking the As4.1 JG cells of SAS patients) or normoxia
for 24 h. After the cells were exposed to IH, they were harvested and the cell extracts
were prepared in an extraction buffer (0.1 M potassium phosphate, pH 7.8/0.2% Triton
X-100; Life Technologies). To monitor the transfection efficiency, the pCMV•SPORT-βgal
plasmid (Life Technologies, Carlsbad, CA, USA) was co-transfected in all the experiments
at a 1:10 dilution. The luciferase activity was measured using a Pica Gene luciferase assay
system (Toyo-ink, Tokyo, Japan) and was normalized according to the β-galactosidase
activity, as described in earlier works [37,40,41,43,50,54–58,64].

4.8. MiR-203 Mimic Transfection

The miR-203 mimic (5′-GUGAAAUGUUUAGGACCACUAG-3′, 5′-AGUGGUCCUAA
ACAUUUCACUU-3′) and non-specific control RNA (miR-203 mimic NC) (5′-UUCUCCGA
ACGUGUCACGUtt-3′, 5′-ACGUGACACGUUCGGAGAAtt-3′) were synthesized by NGRL
and then introduced into the As4.1 cells using Lipofectamine® RNAiMAX (Thermo Fisher
Scientific) [37,48–51,58,59] just prior to the IH/normoxia exposure. The mRNA levels
of the Ren and Cd38 were measured by means of a real-time RT-PCR, as previously de-
scribed [37,43,44,48,50,53–58].

4.9. Data Analysis

The results are expressed as the mean ± SE. Statistical significance was determined by
means of a Student’s t-test using GraphPad Prism software (GraphPad Software, La Jolla,
CA, USA).
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Abbreviations

AGT Angiotensinogen
AGTR1 Angiotensin II receptor type 1
AGTR2 Angiotensin II receptor type 2
cADPR Cyclic ADP-ribose
DICER Endoribonuclease Dicer
DROSHA Ribonuclease type III
ELISA Enzyme-linked immunosorbent assay
FCS Fetal calf serum
FGF2 Fibroblast growth factor 2
IH Intermittent hypoxia
JG Juxtaglomerular
miRNA MicroRNA
RAS Renin-angiotensin system
REN Renin
Rig Rat insulinoma gene
RpS15 Ribosomal protein S15
RyR Ryanodine receptor
SAS Sleep apnea syndrome
siRNA Small interfering RNA
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