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Abstract: Hyperglycemia and hyperinsulinemia activate the proliferative potential of hepatic stellate
cells (HSCs) and promote hepatic fibrosis. Dipeptidyl peptidase-4 (DPP-4) inhibitors, antidiabetic
agents, reportedly inhibit the HSC proliferation. Additionally, Takeda G protein-coupled receptor 5
(TGR5) agonists induce the systemic release of glucagon-like peptides from intestinal L cells, which
maintains glycemic homeostasis. This study assessed the combined effect of TGR5 agonist and DPP-4
inhibitor on diabetes-based liver fibrosis development. Male diabetic rats received intraperitoneal
injection of porcine serum (PS) to induce liver fibrosis, and they were orally administered the
following agents: oleanolic acid (OA) as a TGR5 agonist, anagliptin (ANA) as a DPP-4 inhibitor,
and a combination of both agents. Treatment with OA or ANA significantly improved glycemic
status and attenuated intrahepatic steatosis and lipid peroxidation in diabetic rats. PS-induced
liver fibrosis development was also drastically suppressed by treatment with either agent, and the
combination of both reciprocally enhanced the antifibrotic effect. Fecal microbiome demonstrated
that both agents inhibited the increase in the Firmicutes/Bacteroidetes ratio, an indicator of dysbiosis
related to metabolic syndromes. Furthermore, ANA directly inhibited in vitro HSC proliferative and
profibrogenic activities. Collectively, TGR5 agonist and DPP-4 inhibitor appears to be a novel strategy
against liver fibrosis under diabetic conditions.

Keywords: dipeptidyl peptidase-4 inhibitors; hepatic stellate cells; oleanolic acid; Takeda G
protein-coupled receptor 5

1. Introduction

Liver fibrosis is a common feature of chronic liver injuries caused by a variety of etiologies
(e.g., hepatitis B, hepatitis C, autoimmune disorders, alcohol abuse, and non-alcoholic fatty liver
disease (NAFLD)) [1–3]. Pathologically, liver fibrosis is characterized by hepatic stellate cell (HSC)
activation and excessive accumulation in the extracellular matrix. The progression of liver fibrosis is
often influenced by various pathological conditions. Among others, the diabetic conditions type 2
diabetes mellitus (T2DM) and insulin resistance (IR) are crucial to aggravate fibrogenesis [4,5]. Several
epidemiological studies revealed that IR represents an advanced fibrosis risk factor in patients with
chronic hepatitis C [6,7]. Of note, T2DM and IR are known risk factors for progressive fibrosis in
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NAFLD patients. Remarkably, in adult patients with non-alcoholic steatohepatitis (NASH), T2DM has
been reported to affect the presence of progressive liver fibrosis as well as the progression to advanced
fibrosis [8]. In fact, an earlier study found that either high glucose or insulin increased the production
and expression of collagen genes in the activated hepatic stellate cells (HSCs) playing a central role
in liver fibrosis as the major source of fibrogenic cells [4,5]. Moreover, in a previous report from our
group, we elucidated that the IR status, i.e., co-existence of high glucose and insulin, directly augments
activated HSCs’ in vitro proliferative potential [9].

Importantly, a recent longitudinal study in NASH patients demonstrated that the fibrosis stage
is uniquely associated with long-term overall mortality and liver-related events [10]. This evidence
emphasizes the importance of curative therapies aimed at improving NASH-based fibrosis development.
However, to date, antifibrotic agents have not been clinically established. Therefore, an alternative
strategy, until new drugs become entrenched, may be to identify available compounds showing also
antifibrotic activity. We have recently demonstrated that a dipeptidyl peptidase-4 (DPP-4) inhibitor
successfully attenuated liver fibrosis. Specifically, this agent acted by inhibiting platelet-derived
growth factor-BB-induced phosphorylation of Smad2/3, p38 MAPK, and ERK1/2 in activated HSCs [11].
However, recent randomized controlled trials suggested that DPP-4 inhibitor alone does not improve
liver fibrosis in NAFLD patients [12,13]. Specifically, it has been shown combined therapy is required
to enhance the compounds’ antifibrotic effects.

The G protein-coupled bile acid receptor 1, known as Takeda G protein-coupled receptor (TGR5),
is a cell-surface receptor extensively expressed in various human tissues (e.g., stomach, liver, lung,
skeletal muscle, spleen, adipose tissue, and intestine) [14]. TGR5 can be activated by bile acids and it
plays key roles in cell signaling pathways (i.e., extracellular signal-regulated kinases (ERK), nuclear
factor-κB, and AKT [15–17]. It has been shown that TGR5’s activation provides beneficial effects on
various metabolic diseases such as obesity, dyslipidemia, and T2DM [18]. Of note, TGR5 agonists
stimulate the systemic release of glucagon-like peptide (GLP)-1 and -2 and peptide YY in intestinal L
cells, a type of enteroendocrine cells [19]. GLP-1 is known to be an incretin that exerts insulinotropic
activities in the pancreas by regulating glucose homeostasis. GLP-1 analogs have been established
as antidiabetic agents [20,21]. Moreover, basic studies on NASH rodent models have revealed that
GLP-1 could attenuate hepatic steatosis, inflammation, and fibrosis [22–24]. Additionally, a clinical
evidence has demonstrated that liraglutide, a GLP-1 analog, improves histological features in NASH
patients [25].

Based on the biological interactions highlighted here between TGR5 and GLP-1, TGR5 has become
an enticing potential target for NASH therapeutics. Of note, INT-777, a TGR5 agonist, has been shown
to improve insulin sensitivity. Specifically, this occurs through increased GLP-1 release in the intestine,
resulting in the reduction of hepatic steatosis with lowered liver enzyme levels in diet-induced obese
mice [26]. As a consequence, TGR5 agonists have attracted attention as therapeutic candidates for
diabetes-based liver fibrosis including NASH, particularly in combination with a DPP-4 inhibitor.

This study aims to evaluate the joint effect of the DPP-4 inhibitor anagliptin (ANA) and the TGR5
agonist oleanolic acid (OA) on liver fibrogenesis, and analyze the therapeutic mechanisms using a rat
model with congenital diabetes.

2. Materials and Methods

2.1. Animals and Reagents

Male Otsuka Long–Evans Tokushima fatty (OLETF) rats and littermate Long–Evans Tokushima
Otsuka (LETO) rats were purchased from Japan SLC, Inc. (Hamamatsu, Japan). ANA, a DPP-4
inhibitor, was supplied by Sanwa Kagaku Kenkyusho CO., LTD (Nagoya, Japan). OA (Tokyo Chemical
Industry CO., LTD., Tokyo, Japan) was used as a TGR5 agonist.
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2.2. Animal Treatment

Rats were housed in stainless steel mesh cages under controlled conditions (temperature: 23 ◦C± 3 ◦C;
relative humidity: 50% ± 20%; 10–15 air changes/h; illumination: 12 h/d). Ad libitum access to tap water
throughout the study period was given to the rats. In order to induce liver fibrosis, 16-week-old OLETF
rats underwent an intraperitoneal injection of 1 mL/kg porcine serum (PS) (Cosmo Bio, Tokyo, Japan)
twice a week for 8 weeks. Of note, an equal amount of saline was injected in the negative control group.
The rats were divided into the following five treatment groups (n = 10 each): negative control, PS injection
with vehicle, OA, ANA, and combined agents. During the same period as PS administration, the OLETF
rats’ diet contained a mixture of 100 mg/kg/day of OA and/or 45 mg/kg/day of ANA (CLEA Japan, Inc.,
Osaka, Japan). At the end of experiments, all of the 24-week-old rats underwent the following procedures:
anesthesia, opening of their abdominal cavities, blood collection via aortic puncture, gathering of feces
from the terminal ileum for microbiome analysis, and harvesting of livers for histological evaluation.
Additionally, from the negative control groups, other organs were harvested in order to evaluate the tissue
distribution of TGR5 expression. Routine laboratory methods were used to measure serum biological
markers. All animal procedures were performed based on the recommendations of the Guide for Care
and Use of Laboratory Animals (National Research Council). The animal facility committee of Nara
Medical University (Authorization number: 12052) approved this study.

2.3. Cell Culture

The human enteroendocrine L cell line NCI-H716 (American Type Culture Collection, Manassas,
VA, USA) was cultured as described previously [27]. Briefly, the cells were initially grown in low-glucose
RPMI-1640 (Nacalai Tesque, Kyoto, Japan) with 10% fetal bovine serum (FBS) (Biosera, Kansas City,
MO, USA) at 37 ◦C and in the presence of 5% CO2. Subsequently, in order to generate mature endocrine
cells, they were maintained in Matrigel (Corning, Bedford, MA, USA) with high glucose Dulbecco’s
modified Eagle’s medium (DMEM) (Nacalai Tesque) and 10% FBS for 2 days. Furthermore, 100 U/mL
penicillin and 100 mg/mL streptomycin were added to the culture media at a ratio of 1:1000.

LX-2 human stellate cells and HSC-T6 rat stellate cells were purchased from Merck KGaA
(Darmstadt, Germany). Both lines were maintained as monolayer cultures in DMEM with 10%
FBS and 1% penicillin/streptomycin in an incubator at 37 ◦C and 5% CO2. For each assay, cells
were pre-incubated for 6 h with 5 ng/mL of human and rat transforming growth factor-β1 (TGF-β1)
(Sigma-Aldrich, St. Louis, MO, USA).

2.4. Cell Proliferation Assay

In order to evaluate the direct effect of ANA and OA on human and rat HSC lines, cell proliferation
following treatment with or without both reagents was compared. LX-2 and HSC-T6 cells were
seeded on uncoated plastic dishes at a density of 5 × 104 cells/mL. Following an overnight culture,
the cells were treated with different concentrations of ANA (0–1000 µM) or OA (0–75 µM) for 24 h after
pre-treatment with TGF-β1. Cell proliferation was measured with the WST-1 assay (Takara Bio Inc.,
Kusatsu, Japan) according to the manufacturer’s manual.

2.5. RNA Extraction and Quantitative Real-Time-PCR

Total RNA was extracted from frozen liver tissues, NCI-H716, LX-2, and HSC-T6 cells using
the RNeasy mini kit (QIAGEN, Tokyo, Japan), as per manufacturer’s instructions. Total RNA (2 µg)
from each sample was subsequently reverse transcribed into complementary DNA (cDNA). To this
end, a high-capacity RNA-to-cDNA kit (Applied Biosystems Inc., Foster City, CA, USA) was used,
following the manufacturer’s instructions. cDNA quantitative real-time PCR was performed using
gene-specific primer pairs (Supplementary Materials Table S1) and Step One Real-Time PCR (Applied
Biosystems Inc.). Glyceraldehyde-3-phosphate dehydrogenase was used as an internal control to
measure relative gene expression. The relative amount of target mRNA per cycle was determined by
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applying a threshold cycle to the standard curve. Human skeletal muscle and spleen tissues (Takara
Bio Inc.) were employed as controls for mRNA levels of human GPBAR1.

2.6. Protein Extraction and Western Blotting

Whole cell lysates were prepared from 106 cultured NCI-H716, LX-2, and HSC-T6 cells. LX-2
and HSC-T6 cells were incubated with OA or ANA for 12 h after pretreatment with TGF-β1. For this
purpose, T-PER Tissue Protein Extraction Reagent supplemented with proteinase and phosphatase
inhibitors (all Thermo Scientific, Rockford, IL, USA) was used. Fifty micrograms of whole cell
lysates were separated by SDS-PAGE. Subsequently, they were transferred to a PVDF membrane
that was then blocked with 5% bovine serum albumin in Tris-buffered saline + Tween-20 for 1 h.
Thereafter, each membrane was incubated overnight with the following antibodies against: GPCR-TGR5
(abcam), extracellular signal-regulated kinase (ERK 1/2), phospho-ERK1/2 (Thr202/Tyr204), Smad2,
phospho-Smad2 (Ser465/467), Smad3, phospho-Smad3 (Ser423/425), and β-Actin (Cell Signaling
Technology). The membranes were then washed and incubated with HRP-linked F(ab)2 fragment
(GE Healthcare Life Sciences, Piscataway, NJ, USA; 1:5000 dilution). Finally, Clarity Western ECL
Substrate (BIORAD, Hercules, CA, USA) was used to develop each membrane.

2.7. Intrahepatic Thiobarbituric Acid Reactive Substances (TBARS) Measurement

Whole cell lysates were prepared from 200 mg of frozen liver tissue, as described above.
Intrahepatic TBARS were assessed by measuring the hepatic content of malondialdehyde (MDA).
To this end, a TBARS Assay Kit (Cayman Chemical, Ann Arbor, MI, USA) was used.

2.8. Measurement of Cyclic AMP (cAMP) and GLP-1 Levels

Mature enteroendocrine NCI-H716 cells were cultured in high glucose DMEM, which included
0.2% BSA (Nacalai Tesque). The cells were treated with 0.1% ethanol as solvent control or OA (1, 5,
and 10 µM). Following a 2 h treatment, the cells were collected and lysed with T-PER. The levels of
cAMP in the cell lysate were determined by using a cAMP ELISA kit (Cayman Chemical) and rectified
with cell protein concentration. In order to investigate the effects of OA on GLP-1 secretion, mature
NCI-H716 cells were incubated in KRB buffer (Sigma-Aldrich) and 0.2% FBS. The cells were treated
with 0.1% ethanol and increasing concentrations of OA (1, 5, and 10 µM) for 2 h. GLP-1 levels in the
cellular supernatant supplemented with 50 µg/mL PMSF (Nacalai Tesque) were then measured with
a GLP-1 ELISA assay (Mercodia, Uppsala, Sweden). Furthermore, the serum levels of rat GLP-1 were
measured by GLP-1 ELISA Kit Wako, High Sensitive (Fujifilm Wako Pure Chemical Co., Osaka, Japan),
according to the manufacturer’s instruction.

2.9. Statistical Analyses

Data were subjected to Student’s t-test or one-way analysis of variance followed by Bonferroni’s
multiple-comparison test, as appropriate. Bartlett’s test was used to determine the homology of
variance. Correlations were calculated with the Spearman’s rank test. A two-tailed p-value ≤ 0.05 was
considered as statistically significant. Analyses were performed with EZR (Saitama Medical Center,
Jichi Medical University). The latter is a graphical user interface for R (The R Foundation for Statistical
Computing, version 2.13.0). Specifically, EZR represents a modified version of the R commander
(version 1.6-3). Of note, it includes statistical functions frequently used in biostatistics [28]. Additional
methods can be found online in the Supplementary Materials.

3. Results

3.1. Oleanolic Acid Stimulates GLP-1 Synthesis and Secretion via TGR5 Activation in Human Intestinal Cells

It has been shown that intestinal TGR5 activation has the potential of inducing GLP-1 secretion
via intracellular cAMP production [29]. To confirm this mechanism, we initially investigated the
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regulatory effect of a TGR5 agonist, OA, on in vitro GLP-1 secretion in enteroendocrine cells, the
NCI-H716 endocrine-differentiated human colonic cell. The mRNA expression levels of GPBAR1
encoding TGR5 in NCI-H716 cells was higher than in human skeletal muscle tissue and lower than
in human spleen tissue fully recognized to express TGR5 (Figure 1A). Consistent with the mRNA
expression patterns, TGR5 protein was detected in NCI-H716 cells (Figure 1B). Having demonstrated
the definite expression of TGR5, we then evaluated the stimulatory activities of OA on GLP-1 secretion
in NCI-H716 cells. It was observed that OA induced GLP-1 secretion in this cell line in a concentration
dependent manner (1, 5, and 10 µM) (Figure 1C). Concomitantly with an increased GLP-1 secretion,
OA also significantly augmented intracellular cAMP production. This finding indicates that OA
could induce GLP-1 secretion via TGR5 activation (Figure 1D). Previous evidence has demonstrated
that the proglucagon gene is the precursor gene of GLP-1 and that GLP-1 amide is generated by
post-translational processing of the proglucagon peptide with PC3 [30]. Therefore, we next assessed
the mRNA levels of GCG (proglucagon gene) and PCSK1 encoding PC3. Remarkably, we found that
OA stimulation significantly upregulated the levels of both mRNAs (Figure 1E). These results suggest
that OA stimulates both synthesis and secretion of GLP-1 in human enteroendocrine cells.
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Figure 1. GLP-1 synthesis and secretion in human intestinal cells. (A) Relative mRNA expression levels
of human GPBAR1. Quantitative values are indicated as ratios to the values of NCI-H716. Human
skeletal muscle and spleen tissues were used as controls. (B) Western blots of whole cell lysates for
the expression of TGR5. Actin was used as internal control for western blotting. (C) Measurement of
human GLP-1 concentrations in NCI-H716 cell-cultured media. NCI-H716 cells were cultured with
different concentrations of oleanolic acid (OA) for 2 h. (D) Measurement of human intracellular cAMP
concentrations in NCI-H716 cells. NCI-H716 cells were cultured with different concentrations of
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oleanolic acid for 2 h. (E) Relative mRNA expression levels of human GCG and PCSK1 in NCI-H716
cells treated without and with oleanolic acid (10 µM) for 2 h. Quantitative values are indicated as
ratios to the values of OA (–)-group. Relative mRNA expression levels were measured by quantitative
RT-PCR (qRT-PCR). GAPDH was used as internal control for qRT-PCR (A,D). Data are mean ± SEM
(n = 8). a, P ≤ 0.05 compared with OA (–)-group; b, P ≤ 0.05 compared with OA (1 µM)-group (B–D).

3.2. Oleanolic Acid and Anagliptin Effectively Collaborate to Exert an Antidiabetic Effect in Diabetic
OLETF Rats

Based on the stimulatory property of OA on GLP-1 synthesis and secretion, we evaluated the
antidiabetic effect of OA in combination with ANA, a DPP-4 inhibitor. Experimental protocols are
shown in Figure 2A. At the first onset, we confirmed a similarity of TGR5 expression’s histological
distribution in diabetic OLETF rats and human organs. We observed a higher expression in the ileum,
spleen, and white adipose tissue (Figure 2B). OLETF rats had a significantly higher body weight
compared to nondiabetic LETO rats (Supplementary Materials Figure S1A). Additionally, the OLETF
rats’ body weight remained unchanged following fibrotic induction with PS and administration of OA
and/or ANA during the experimental period (Figure 2C). These results suggest that treatment with OA
and ANA did not affect diabetic rats’ obesity.

Next, the alterations in the glycemic status following treatment with OA and ANA were assessed.
At the experiment’s conclusion, an oral glucose tolerance test (OGTT) was performed to determine the
differential glycemic status among the experimental groups. Based on the underlying characteristics,
OLETF rats exhibited impaired glucose tolerance, and OA and/or ANA treatment significantly
lowered serum glucose levels at 30, 60, and 120 min in OGTT (Supplementary Materials Figure
S1B and Figure 2D). Estimation of AUC for plasma glucose in OGTT revealed that in the OLETF
rats hyperglycemia significantly improved with both agents (Figure 2E). In keeping with glucose
intolerance, OA and ANA treatment lowered the homeostasis model assessment of insulin resistance
(HOMA–IR)’s high values in OLETF rats. Additionally, quantitative insulin sensitivity check index
(QUICKI), a surrogate marker of insulin sensitivity, increased following the administration of both
agents (Figure 2F,G). Of note, the combined administration of OA and ANA showed more potent
improvement effects on both HOMA–IR and QUICKI vs the administration of either agent alone
(Figure 2F,G). Next we aimed at determining whether treatment with OA stimulates GLP-1 secretion.
For this, we evaluated serum GLP-1 levels. As expected, either OA or ANA-treated OLETF rats showed
significantly higher levels of serum GLP-1 vs. vehicle-treated OLETF rats. Furthermore, interestingly,
their combined administration further increased GLP-1 levels (Figure 2H).

3.3. Effects of Oleanolic Acid and Anagliptin on Hepatic Steatosis and Lipid Peroxidation in OLETF Rats

Given the antidiabetic effects of OA and ANA, we analyzed the differential phenotypes in the
liver of each experimental group. Despite the unchanged body weight, a fibrotic induction with
PS increased the liver weight in OLETF rats. This increase was significantly attenuated by OA and
ANA treatment (Figure 3A,B). Histological findings by hematoxylin and eosin staining revealed
hepatic steatosis in OLETF rats, and hepatic steatosis in OLETF rats persisted without any changes
under the condition of PS administration. Of note, OA and ANA treatment remarkably attenuated
hepatic fat accumulation (Supplementary Materials Figure S1C and Figure 3A,C). In line with the
altered histological features, higher alanine aminotransferase (ALT) and triglyceride serum levels were
observed in the OLETF rats than in the LETO rats. Such elevated levels declined following treatment
with both agents (Supplementary Materials Figure S1D and Figure 3D). It is known that reactive oxygen
species play a key role both in inducing liver damage and initiating hepatic fibrogenesis [31]. Therefore,
we next assessed the alterations in lipid peroxidation in the liver of the experimental groups. As for
lipid accumulation, OLETF rats had elevated MDA hepatic levels, a marker of TBARS. This elevation
was potently boosted by PS-mediated fibrotic induction (Supplementary Materials Figure S1E and
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Figure 3E). Consistent with attenuated hepatic steatosis, we found that the MDA levels were also
significantly lowered by OA and ANA treatment (Figure 3E).Cells 2018, 7, x FOR PEER REVIEW  7 of 18 

 
 

 
Figure 2. In vivo effects of oleanolic acid and anagliptin on glycemic status. (A) Schematic of porcine-
serum (PS)-induced rat liver fibrosis models. (B) Histological distribution of Gpbar1 mRNA 
expression in OLETF rats. Quantitative values are relatively indicated as ratios to the values of rat 
heart tissue. (C) Changes in body weights during experimental period. (D) Serum glucose levels in 
oral glucose tolerance test (OGTT) at the end of experiment. (E) The values of glucose–AUC (area 
under the blood concentration–time curve) in the experimental groups. The values of AUC were 
calculated as area under the curve of serum glucose levels at OGTT. (F, G) The values of homeostasis 
model assessment–insulin resistance (HOMA–IR) (F) and Quantitative Insulin Sensitivity Check 
Index (QUICKI) (G) in experimental rats. (H) The serum levels of rat GLP-1 at the end of experiment. 
Relative mRNA expression levels were measured by quantitative RT-PCR (qRT-PCR). Gapdh was 
used as internal control for qRT-PCR (B). Data are mean ± SD (B–G; n = 10, H; n = 8). Ctr; negative 
control group, Veh; vehicle-treated PS-injected group, OA; oleanolic acid-treated PS-injected group, 
ANA; anagliptin-treated PS-injected group, Both; oleanolic acid and anagliptin-treated PS-injected 
group. a,P ≤ 0.05 compared with Ctr-group; b,P ≤ 0.05 compared with Veh-group; c,P ≤ 0.05 compared 
with OA-group; d,P ≤ 0.05 compared with ANA-group. 

3.3. Effects of Oleanolic Acid and Anagliptin on Hepatic Steatosis and Lipid Peroxidation in OLETF Rats 

Figure 2. In vivo effects of oleanolic acid and anagliptin on glycemic status. (A) Schematic of
porcine-serum (PS)-induced rat liver fibrosis models. (B) Histological distribution of Gpbar1 mRNA
expression in OLETF rats. Quantitative values are relatively indicated as ratios to the values of rat
heart tissue. (C) Changes in body weights during experimental period. (D) Serum glucose levels in
oral glucose tolerance test (OGTT) at the end of experiment. (E) The values of glucose–AUC (area
under the blood concentration–time curve) in the experimental groups. The values of AUC were
calculated as area under the curve of serum glucose levels at OGTT. (F,G) The values of homeostasis
model assessment–insulin resistance (HOMA–IR) (F) and Quantitative Insulin Sensitivity Check Index
(QUICKI) (G) in experimental rats. (H) The serum levels of rat GLP-1 at the end of experiment.
Relative mRNA expression levels were measured by quantitative RT-PCR (qRT-PCR). Gapdh was used
as internal control for qRT-PCR (B). Data are mean ± SD (B–G; n = 10, H; n = 8). Ctr; negative control
group, Veh; vehicle-treated PS-injected group, OA; oleanolic acid-treated PS-injected group, ANA;
anagliptin-treated PS-injected group, Both; oleanolic acid and anagliptin-treated PS-injected group.
a, P ≤ 0.05 compared with Ctr-group; b, P ≤ 0.05 compared with Veh-group; c, P ≤ 0.05 compared with
OA-group; d, P ≤ 0.05 compared with ANA-group.
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Figure 3. In vivo effects of oleanolic acid and anagliptin on hepatic steatosis and lipid peroxidation.
(A) Representative macroscopic appearances (upper panels) and microphotographs of hematoxylin and
eosin (HE) staining (lower panels) in the experimental groups. Scale bar; 50 µm. (B) Ratio of liver to
body weight. (C) Histological score of steatosis according to NAFLD Activity Score. (D) Serum levels of
alanine aminotransferase (ALT) and triglyceride (TG). (E) Hepatic concentrations of malondialdehyde
(MDA). Data are mean ± SD (n = 10). Ctr; negative control group, Veh; vehicle-treated PS-injected
group, OA; oleanolic acid-treated PS-injected group, ANA; anagliptin-treated PS-injected group, Both;
oleanolic acid and anagliptin-treated PS-injected group. a, P ≤ 0.05 compared with Ctr-group; b, P ≤ 0.05
compared with Veh-group; c, P≤ 0.05 compared with OA-group; d, P≤ 0.05 compared with ANA-group.

3.4. Effects of Oleanolic Acid and Anagliptin on Liver Fibrosis Development and Hepatic Stellate
Cell Activation

Based on the OA and ANA’s antisteatotic and antioxidant activities, we next evaluated the effects
of both agents on liver fibrosis development. As shown in Figure 4A,B, 8-weeks of repeated PS
administration sufficiently induced liver fibrosis development, which was indicated by complete
formation of thin and straight septa between central veins as evaluated by sirius red stain in OLETF
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rats, and treatment with either OA or ANA improved PS-mediated liver fibrosis development. Of note,
the combination of both agents drastically enhanced the antifibrotic effect of each single treatment.
Thereafter, we performed an immunohistochemical analysis with α-SMA staining. The aim was to
assess HSCs’ activation, which plays a crucial role in hepatic fibrogenesis. Remarkably, the combination
treatment decreased the α-SMA positive areas in PS-mediated OLETF rats, along with liver fibrosis
(Figure 4A,B). The observed ameliorations in the fibrotic phenotypes coincided with reduced hepatic
expressions of profibrotic genes, including Acta2, Col1a1, Fn1, and Ctgf (Figure 4C).

We then planned to further explore the molecular mechanism underlying these antifibrotic
properties. To this end, we aimed at revealing the direct effect of OA and ANA on in vitro LX-2 and
HSC-T6 cells, human and rat Ac-HSCs, respectively. Cell proliferation assays demonstrated that ANA
attenuated the proliferation of LX-2 and HSC-T6 cells upon TGF-β1 challenge in a dose-dependent
manner (Figure 5A). In contrast, we observed that OA had no effect on the proliferation of these
lines, and it induced toxic cell death at a concentration higher than 25 µM, in line with the absence
of GPBAR1 expression in the activated HSCs (Figure 1A,B and Figure 5B). Moreover, we found that
the profibrogenic markers Acta2 and Col1a1’s expression in both types of Ac-HSCs were profoundly
decreased following the treatment with ANA while not with OA (Figure 5C). Of note, consistent with
changes in the proliferative and profibrogenic capacity, treatment with ANA in both LX-2 and HSC-T6
cells suppressed TGF-β1-mediated phosphorylation of ERK1/2 and Smad 2/3 (Figure 5DMcKenzie, C.A.;
Tirona, R.G.; Summers, K.; Seney, S.; Chakrabarti, S.; Malhotra, N.; Beaton, M.D. Sitagliptin in patients
with non-alcoholic steatohepatitis: A randomized, placebo-controlled trial. World J. Gastroenterol.
2017, 23, 141–150.). Meanwhile, treatment with OA did not change these signal transductions in both
lines (Figure 5E).

3.5. Changes in Fecal Microbial Profiles by Treatment with Oleanolic Acid and Anagliptin in OLETF Rats

Recent reports have shown that the gut microbiota was modified by administration of a DPP4
inhibitor and TGR5’s activation [32,33]. Therefore, we next assessed fecal microbial profiles. A global
structural analysis revealed no significant differences in the microbial richness and diversity, indicated
by Chao and Shannon indexes, respectively, for the experimental groups (Supplementary Materials
Figure S2A and Figure 6A). In short, compared to the normal state, the microbiota in the diabetic
status features a higher percentage of Firmicutes and a lower percentage of Bacteroidetes, i.e., a higher
ratio of Firmicutes:Bacteroidetes (F/B) at the phylum level [34–36]. In line with these observations,
we found that OLETF rats had a higher F/B ratio in average abundance compared with LETO rats
(Supplementary Materials Figure S2B). Of note, F/B’s increased ratio was inhibited by OA and ANA
treatment (Figure 6B). Additionally, univariate correlation analysis demonstrated that in all OLETF
rats, the F/B ratio positively correlated with the value of HOMA–IR (R = 0.336, p = 0.044, Figure 6C).
In particular, at the genus levels, a higher abundance in Bacteroides and a lower abundance in Prevotella
were observed in the feces of OLETF rats OA and/or ANA treated. On the contrary, the average
abundance of Ruminococcus and Lactobacillus was not affected by treatment with both agents (Figure 6D).
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OA; oleanolic acid-treated PS-injected group, ANA; anagliptin-treated PS-injected group, Both; 
oleanolic acid and anagliptin-treated PS-injected group. a,P ≤ 0.05 compared with Ctr-group; b,P ≤ 0.05 
compared with Veh-group; c,P ≤ 0.05 compared with OA-group; d,P ≤ 0.05 compared with ANA-
group. 

Figure 4. In vivo effects of oleanolic acid and anagliptin on liver fibrosis. (A) Representative
microphotographs of liver sections stained with sirius red and α-SMA. Scale bar; 50 µm. (B,C) Semi-
quantitation of sirius red-stained fibrotic area (B: Ctr; 0 ± 0%, Veh; 100.0 ± 7.0%, OA; 53.2 ± 3.9%, ANA;
39.1 ± 5.9%, Both; 24.2 ± 2.6%), and α-SMA immune-positive area (C: Ctr; 0 ± 0%, Veh; 100.0 ± 13.3%,
OA; 20.1 ± 5.4%, ANA; 18.6 ± 3.1%, Both; 8.6 ± 5.0%) in high-power field by NIH imageJ software.
(D–G) Relative mRNA expression levels of fibrosis markers, Acta2 (D: Ctr; 1.00 ± 0.13, Veh; 6.54 ±
0.98, OA; 3.46 ± 0.19, ANA; 2.97 ± 0.48, Both; 1.44 ± 0.07), Col1a1 (E: Ctr; 1.00 ± 0.41, Veh; 18.97 ±
2.06, OA; 6.30 ± 1.03, ANA; 3.02 ± 0.03, Both; 3.17 ± 1.16), Fn1 (F: Ctr; 1.00 ± 0.14, Veh; 1.34 ± 0.12,
OA; 0.77 ± 0.11, ANA; 0.66 ± 0.20, Both; 0.61 ± 0.19), and Ctgf (G: Ctr; 1.00 ± 0.07, Veh; 1.53 ± 0.21,
OA; 0.76 ± 0.11, ANA; 0.70 ± 0.30, Both; 0.67 ± 0.36) in the liver of experimental mice. The mRNA
expression levels were measured by quantitative RT-PCR (qRT-PCR), and Gapdh was used as internal
control for qRT-PCR (D). Data are mean ± SD (n = 10). Ctr; negative control group, Veh; vehicle-treated
PS-injected group, OA; oleanolic acid-treated PS-injected group, ANA; anagliptin-treated PS-injected
group, Both; oleanolic acid and anagliptin-treated PS-injected group. a, P ≤ 0.05 compared with
Ctr-group; b, P ≤ 0.05 compared with Veh-group; c, P ≤ 0.05 compared with OA-group; d, P ≤ 0.05
compared with ANA-group.
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Figure 5. Effects of oleanolic acid and anagliptin in vitro hepatic stellate cells. (A,B) The effects of
anagliptin (ANA) (A) or oleanolic acid (OA) (B) on the TGF-β1-stimulated proliferation of LX-2 and
HSC-T6 cells. Both cell lines were cultured with different concentrations of ANA or OA for 24 h. The
proliferative rate is the ratio to control group cultured without TGF-β1 and ANA or OA. (C) The
effects of anagliptin (ANA) or oleanolic acid (OA) on the mRNA expressions of ACTA2 (Acta2) and
COL1A1 (Col1a1) in the TGF-β-stimulated LX-2 and HSC-T6 cells. Both cell lines were cultured with
10 µM of ANA or OA for 24 h. Quantitative values are relatively indicated as ratios to the values of
ANA(–)/OA(–)-group. The mRNA expression levels were measured by quantitative RT-PCR (qRT-PCR),
and Gapdh was used as internal control for qRT-PCR. (D,E) Western blots of whole cell lysates from
LX-2 and HSC-T6 for the phosphorylation of Smad2, Smad3, and ERK1/2. The cells were cultured with
and/or without TGF-β and ANA (D) or OA (E). Actin was used as internal control for western blotting.
Data are mean ± SEM (n = 8). &, P ≤ 0.01 compared with TGF-β1(–)/ANA(–)/OA(–)-group; *, P ≤ 0.05;
**, P ≤ 0.01 compared with TGF-β1(+)/ANA(–)/OA(–)-group.
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Figure 6. Changes in rat fecal microbiota by oleanolic acid and anagliptin. (A) Comparative analysis
of Chao1 richness and Shannon diversity in fecal microbiome of the experimental groups. (B) The
ratio of Firmicutes:Bacteroidetes (F/B) at the phylum level in the experimental groups. (C) Univariate
correlation analysis between the ratio of F/B and the values of HOMA–IR in the experimental OLETF
rats. (D) Relative abundances of Bacteroides, Prevotella, Ruminococcus, and Lactobacillus at the genus level
in the experimental group. Ctr; negative control group, Veh; vehicle-treated PS-injected group, OA;
oleanolic acid-treated PS-injected group, ANA; anagliptin-treated PS-injected group, Both; oleanolic
acid and anagliptin-treated PS-injected group. Data are means ± SD (n = 5). *, P ≤ 0.05.

4. Discussion

The aim of this study was to explore a novel therapeutic strategy for diabetes-related liver
fibrosis. To this end, we proposed a combined treatment with the DPP-4 inhibitor ANA and the TGR5
agonist OA. Our results demonstrated that in diabetic OLETF rats, the TGR5 agonist OA efficiently
potentiated the antifibrotic activity of ANA against PS-induced hepatic fibrogenesis. We believe
that this ANA-mediated antifibrotic effect is due to several underlying mechanisms (Figure 7). The
first is based on its antidiabetic action. Our study demonstrates that ANA treatment suppressed
hepatic steatosis. In turn, this ensues as a result of lipid peroxidation’s accumulation by improving
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hyperglycemia and IR. As a consequence, OLETF rats experience the development of an attenuated liver
fibrosis. These findings are in line with earlier studies showing in NASH rodent models that sitagliptin,
another DPP-4 inhibitor, inhibited liver fibrosis by suppressing steatosis and oxidative stress [37–39].
Additionally, a previous report from our group has found that activated HSCs’ proliferative potential
was boosted under the co-existence of hyperglycemia and hyperinsulinemia at similar levels in
OLETF rats [9]. An additional cell-based experiment has also found that high glucose stimulated
proliferation via the NADPH oxidase-mediated reactive oxygen species, a mechanism recognized to be
involved in HSC activation [40]. We believe that these evidences suggest that ANA possibly inhibited
HSCs activation and proliferation by improving the glycemic status. Strikingly, we observed that
OA-stimulated intestinal TGR5 activation had an inhibitory effect on liver fibrosis with antidiabetic
and antioxidant properties even on its own. Additionally, it determined a pronounced augmentation
of ANA-mediated effects.
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Secondly, our in vitro assays found that ANA suppressed activated HSCs’ TGF-β1-stimulated
proliferation and profibrogenic activity in normal conditions. Such findings suggest that HSCs were
affected by ANA independently of altered glycemic status. It has been shown that in the liver,
DPP-4 plays a role in fibronectin-mediated interaction of hepatocytes with the extracellular matrix.
Furthermore, DPP-4 is expressed on the surface of reactive fibroblasts, including activated HSCs [41].
Wang et al. have shown that DPP-4 exhibits profibrotic behavior in carbon tetrachloride-induced liver
fibrosis [42]. Based on these findings, several DPP-4 inhibitors (i.e., sitagliptin and alogliptin) have
been reported to exert direct inhibitory effects on liver fibrosis development. Additionally, they play
a role in suppression of proliferation and collagen synthesis in activated HSCs [11,43]. Similarly, we
found that ANA directly relieved HSC activation by suppressing the phosphorylation of ERK1/2 and
Smad 2/3. Unlike the effects of ANA, OA did not show a direct influence on the activated HSCs due to
the absence of TGR5 expression. On the contrary, it was recently reported that OA-derivatives inhibit
the proliferation and induce apoptosis of HSC-T6 cells [44]. However, the molecular mechanisms
underlying these phenomena remain unclear. As a consequence, further investigation is necessary to
clarify this discrepancy and the process at its basis.

In the present study, we also assessed fecal microbial alterations by ANA and OA. The results
of our investigation found that in OLETF rats, ANA normalized the increased phylum F/B ratio,
a well-known dysbiosis indicator related to metabolic syndromes [34–36]. A recent study on a rat
diabetic model has found that vildagliptin treatment also provided a similar microbial modification
following a high-fat diet/streptozotocin injection [32]. Interestingly, we identified a normalization of
this F/B ratio in the OA-treated group. This effect is in line with a report showing that GLP-1 therapy can
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enrich Bacteroidetes in streptozotocin-induced diabetic rats [45]. By contrast, earlier rodent research
associated with dysbiosis suggested that OA reduced the abundance of the phylum Bacteroidetes in
parenteral nutrition-treated rats [33]. These conflicting findings may be linked to the susceptibility
of Bacteroidetes’s gut enrichment based on the nutritional status. Moreover, we observed marked
changes in the dominant genus within the Bacteroidetes. Such results indicate a decreased abundance
of Prevotella following ANA and OA treatment. These findings seem to play a role in diabetic status
improvement, in line with a recent report showing that the population of Prevotella declined in OLETF
rats following metformin exposure [46]. Meanwhile, in contrast to earlier investigations, Ruminococcus
and Lactobacillus, the genera belonging to Firmicutes, showed no changes in our study [32,46]. Since
the reason for this discrepancy remains obscure to date, in the future we would like to pursue this line
of research.

Several limitations can be identified in the present study. First, we focused in particular on
OA’s effects as a TGR5 agonist on glucose metabolism. However, OA has been reported to show
hepatoprotective effects with other molecular mechanisms. For example, Reisman et al. demonstrated
that OA can activate the nuclear factor erythroid-2 related factor 2-Keap1 pathway [47]. Since this
pathway also plays a key role in oxidative stress and HSCs activation, additional analysis of the
relationship with OA-mediated antifibrotic effects in the present model is required. Second, the
OA’s pharmacological impacts on the liver are controversially reported. Our results and those of
other reports indicate hepatoprotective effects of OA treatment. However, it is imperative to note
that some other studies have shown a detrimental effect following OA treatment. Liu et al. have
disclosed that repeated administration of high OA doses alters bile acid homeostasis and induces
cholestatic liver injury [48]. In our study, we observed that OA could exert antidiabetic and antifibrotic
effects even at a lower dose compared to the minimal toxic dose reported in the previous study [49].
Additionally, neither high levels of serum alkaline phosphatase nor hyperbilirubinemia were observed
in OA-treated OLETF rats (data not shown). However, future studies should address alterations of
bile acid metabolism. Third, the present study evaluated the effects of both agents using only a single
liver fibrotic model. The present PS-induced model has been shown to exhibit liver fibrosis formation
without hepatic inflammation [50]. The main purpose of this study was to identify the efficacy of
both agents on liver fibrosis but not inflammation. As a consequence, we believed it would be better
to remove influences on hepatic inflammation. In order to further elucidate whether these affect
hepatic inflammation in the process of NASH, additional investigation is required by using other
experimental models.

Taken together, OA, a TGR5 agonist, appears to potentiate the inhibitory effects on liver fibrosis
development mediated by ANA, a DPP-4 inhibitor, in diabetic rats. Importantly, the pharmacological
actions of both agents were achieved at a pharmacological dose without adverse effect. Thus, we
believe that given our experimental results, this combination regimen may represent a potential novel
strategy for antifibrotic therapy against diabetes-based liver fibrosis.
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Abbreviations

ALT Alanine aminotransferase
ANA Anagliptin
DMEM Dulbecco’s modified Eagle’s medium
DPP4 Dipeptidyl peptidase-4
ERK Extracellular signal-regulated kinase
FBS Fetal bovine serum
GLP Glucagon-like peptide
HOMA-IR Homeostasis model assessment of insulin resistance
HSC Hepatic stellate cell
IR Insulin resistance
LETO Long–Evans Tokushima Otsuka
MDA Malondialdehyde
NAFLD Non-alcoholic fatty liver disease
NASH Non-alcoholic steatohepatitis
OA Oleanolic acid
OGTT Oral glucose tolerance test
OLETF Otsuka Long–Evans Tokushima Fatty
PS Porcine serum
QUICKI Quantitative insulin sensitivity check index
TGR Takeda G protein-coupled receptor
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