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Summary

Recent basic and clinical studies have shown that PD-L/PD-1 pathway has a significant role

in tumour immunity and its blockade has a therapeutic potential against several human

cancers. We hypothesized that antiangiogeneic treatment might augment the efficacy of PD-1

blockade. To this end, we evaluated combining blockade of PD-1 and VEGFR2 in a murine

cancer model using Colon-26 adenocarcinoma. Interestingly, simultaneous treatment with

anti-PD-1 and anti-VEGFR2 mAbs synergistically inhibited tumour growth in vivo without

overt toxicity. Blocking VEGFR2 significantly inhibited tumour neovascularization as

demonstrated by the reduced number of microvessels, while PD-1 blockade had no impact on

tumour angiogenesis. PD-1 blockade might promote T cell infiltration into tumours and

significantly enhanced local immune activation as shown by the upregulation of several

proinflammatory cytokine expressions. Importantly, VEGFR2 blockade did not interfere with

T cell infiltration and immunological activation induced by PD-1 blockade. In conclusion,

simultaneous blockade of PD-1 and VEGFR?2 induced a synergistic in vivo antitumour effect

possibly through different mechanisms that might not be mutually exclusive. This unique

therapeutic strategy may hold significant promise for future clinical application.
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Introduction

Blocking immune checkpoints can potentially activate and sustain T cell response against

tumours [1]. CTLA-4 (CD152) is well known to serve as a dominant inhibitory receptor on T

cells, and it plays a key role in immune tolerance and homeostasis [2, 3]. CTLA-4 blockade has

been long expected as a new cancer immunotherapy. A recent large-scale randomized clinical

trial nicely demonstrated that immunotherapy using anti-human CTLA-4 monoclonal

antibody had a significant antitumour response and improved overall survival in metastatic

melanoma [4]. That was the first therapy to extend the overall survival in humans and one of

the most successful cancer immunotherapies. However, immune-related adverse events had

been also reported, and some patients died due to severe toxicities related to the study drugs.

Therefore, another treatment targeting T cell negative regulatory pathway with less toxicity as

well as the substantial efficacy for anticancer treatment would be desirable.

Programmed death 1 (PD-1, CD279) is another potent immune-checkpoint receptor

[5-7]. PD-1/programmed death lingand-1 (PD-L1) also functions as a negative regulator of T

cell activation and contributes to the prevention of autoimmune diseases. A number of

previous studies have shown that PD-1/PD-L1 pathway has clinical importance in several

human malignancies and its blockade has a significant antitumour effect in rodent models
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[8-10]. Furthermore, recent Phase I clinical trials have shown that anti-human PD-1 or PD-L1

antibodies were tolerable for clinical use and might hold great promise as new anticancer

treatment for several advanced human malignancies [11, 12]. However, the effect of targeting

PD-1/PD-L1 alone may be insufficient especially for advanced or intractable malignant

tumours that are resistant to conventional anticancer treatments including chemotherapy and

radiotherapy. Therefore, it should be important to investigate the combination treatments for

augmenting the potency of PD-1 blockade.

It is known that angiogenesis is a key feature in cancer development and metastasis [13,

14]. Among various regulators of angiogenesis, VEGF and its receptor VEGFR are thought to

be essential [15]. Basic findings have shown that blocking of VEGF/VEGFR pathway

disrupts tumour microvessels and inhibits tumour growth. Furthermore, it has been also

reported that VEGF/VEGFR blockade could also normalize abnormal tumour vessels and

increase tumour oxygenation, drug supply and immune cells [16-19]. Indeed, anti-VEGF

treatment is currently standard therapy for several human malignancies. However, it is also

insufficient as a single treatment and usually administered with other cytotoxic anticancer

drugs.

In this study, we hypothesized that antiangiogenesis treatment may enhance the
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antitumour effect of targeting PD-1 pathway without enhancing toxicity by efficiently

inducing T-cell infiltration into tumours. To this end, we employed an anti-VEGF receptor-2

(VEGFR2, CD309) monoclonal antibody (mAb), designated DC101. VEGFR2 is a major

receptor for VEGF and plays a central role in tumour angiogenesis [20]. Furthermore, this

mAb has been proven to have certain antitumour effect in murine models [21-24].

Materials and methods

Animal and cell line

Female BALB/c mice (5—6-weeks old) were obtained from CLEA JAPAN (Tokyo, Japan). All

mice were maintained under specific pathogen-free conditions in the animal facility at Nara

Medical University. All experiments were conducted under a protocol approved by our

institutional review board. A murine Colon-26 adenocarcinoma was obtained from RIKEN

Cell Bank (Tsukuba, Japan). Cells were grown in RPMI 1640 supplemented with 10%

heat-inactivated fetal bovine serum.
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Antibodies

The anti-mouse PD-1 blocking monoclonal antibody (mAb) (RMP1-14, rat IgGl) was

generated as previously described [25]. The anti-mouse VEGFR2 blocking mAb (DC101, rat

IgG1) was kindly provided by ImClone Systems (New York, NY). The anti-mouse CD34

mAb (MEC 14.7, rat IgG2a), the anti-CD4 Ab (sc-7219, rabbit polyclonal), and the anti-CD8

mAb (EP1150Y, rabbit IgG) was purchased from Abcam (Tokyo, Japan), Santa Cruz

Biotechnology, Inc (Santa Cruz, CA), and Novus Biologicals (Littleton, CO), respectively.

Animal experimental protocol

One million Colon-26 cells were subcutaneously inoculated in the flank of syngeneic BALB/c

mice with 100 pl of cell suspension with an equal volume of Matrigel (BD Bioscience). When

tumour reached 4-5 mm in diameter around 3 days after tumour inoculation, treatment was

started. In the antibody treatment arm, mice were intraperitoneally injected with 0.25 mg of

RMP1-14, and/or 0.8mg of DC101 every other day for 5 times. Control mice received control

rat [gG. The doses were determined on the basis of our preliminary experiments and previous

studies [8, 23, 24]. Tumour size was determined by electric caliper measurements. In some
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mice, mice were sacrificed and tumours were removed for further analysis at 11 days after

tumour establishment.

Cell viability analysis

Cell viability was determined using the Cell-titer 96 aqueous one solution cell proliferation
assay kit, according to the instruction manual (Promega Corporation, Madison, WI, USA).
Briefly, aliquots of 3x10° cells per well were cultured in 96-well plates with control IgG,
RMP1-14, DCI101 or both of RMP1-14 and DCI101 for 72 h. Antibody was used at a
concentration of 1 or 10 pg/ml. Cell-titer 96 aqueous one solution was added to each well and
incubated for an additional 1 h. The absorbance at 490 nm was recorded with a 96-well plate

reader. Each experiment was performed in triplicate and repeated at least thrice.

Immunohistochemistry and tumour vessel density measurement

Formalin-fixed or zinc-fixed, paraffin-embedded tissues of primary tumour were cut into
S5-um sections, deparaffinised, and rehydrated in a graded series of ethanol. To block
endogenous peroxidase, sections were immersed in 0.3 % solution of hydrogen peroxide in

absolute methanol for 5 min at room temperature and washed thrice in fresh PBS, each of 5
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min duration. Purified rat anti-mouse CD34 mAb, rabbit anti-CD4 Ab, or rabbit anti-CD8

mADbD diluted with Antibody Diluent (DAKO, Tokyo, Japan) was added and incubated for 1 h

at room temperature or overnight at 4°C. Sections were washed thrice in PBS, each of 5 min

duration, and then Histofine Simple Stain MAX PO (NICHIREI, Tokyo, Japan) was added

and incubated at room temperature for 30 min. After washing thrice, the Histofine DAB

substrate kit (NICHIREI) was added and incubated at room temperature for 5 min. Sections

were rinsed thrice in distilled water, counterstained with haematoxylin, dehydrated in ethanol,

cleared in Hemo-De, and coverslipped. For tumour vessel density measurement, slides were

scanned at low power fields (x40) to identify areas of highest vascularity. 20 high-powered

(x200) fields were then selected randomly within these areas, and tumour vessel densities were

calculated based on the number of CD34-positive luminal structures. To rule out the

possibilities that staining kit reacted with antibodies which had been used for the treatment in

mice, we confirmed no positive signals in samples stained without primary anti-CD34 mAb.

Extraction of total RNAs and real-time reverse- transcriptase PCR analysis

Total RNA was isolated using RNAspin Mini (GE Healthcare, Tokyo, Japan) and the

first-strand cDNA was synthesized from 1 pg RNA using a High Capacity cDNA Reverse
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Transcription Kit (Applied Biosystems, Foster City, CA, USA), according to the

manufacturer’s protocol. Real-time quantitative PCR analysis was carried out using an ABI

Prism 7700 sequence detector system (Applied Biosystems). All primer/probe sets were

purchased from Applied Biosystems. PCR was carried out using the TagMan Universal PCR

Master Mix (Applied Biosystems) using 1 pl of cDNA in a 20 pl final reaction volume. The

PCR thermal cycle conditions were as follows: initial step at 95°C for 10 min, followed by 40

cycles of 95°C for 15 s and 60°C for 1 min. The expression level of the housekeeping gene

B>-microglobulin was measured as an internal reference with a standard curve to determine

the integrity of template RNA for all specimens. The ratio of the mRNA level of each gene

was calculated as follows: (absolute copy number of each gene)/(absolute copy number of

B>-microglobulin).

Statistical analysis

Results were expressed as mean values * standard error, and Student’s t test or Welch’s t test

was used for evaluating statistical significance. A value less than 0.05 was considered for

statistical significance.
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Results

Simultaneous blockade of PD-1 and VEGFR2 induced synergistic antitumour effect
First, we investigated the efficacy of simultaneous blockade with both PD-1 and VEGFR?2 in
vivo using murine colon cancer model. Tumour cells were inoculated subcutaneously with
1x10° in the right flank of BALB/c mice and treated with anti-PD-1 mAb (RMP1-14) and/or
anti-murine VEGFR2 mAb (DC101). Control rat IgG was used as a control. In vivo treatment
either with anti-PD-1 mAb or anti-VEGFR2 mAbD induced a substantial antitumour effect and
significantly inhibited tumour growth compared to control (Fig 1). There was no significant
difference in tumour growth between PD-1 and VEGFR2 blockade. Furthermore, dual
blockade of both PD-1 and VEGFR?2 significantly inhibited tumour growth compared to each
mADb treatment (Fig 1). Thus, the combination therapy of anti-PD-1 and anti-VEGFR2 mAb
showed a synergistic antitumour effect in tumour growth. There were no overt toxicities in

treated mice.

Effect of PD-1 and VEGFR2 blockade on cancer cell in vitro
To analyze the underlying mechanisms in tumour growth inhibition induced by PD-1 and

VEGFR2 blockade, we evaluated in vitro effect of anti-PD-1 and anti-VEGFR2 mAb on
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Colon-26. A total of 3000 Colon-26 were co-cultured with anti-PD-1 mAb, anti-VEGFR2

mAb, or both mAbs. Control rat IgG was used as a control. The survival rate of Colon-26 was

determined by MTS assay. As a result, anti-PD-1 mAb and anti-VEGFR2 mAb did not affect

cell survival. Thus, blockade of PD-1 and VEGFR2 does not have any direct effect on cancer

cell growth (Fig 2).

VEGFR2 blockade inhibited tumour neovascularization

Then, we analyzed tumour neovascularization by immunohistochemistry with antibody

against CD34 (Fig 3A). Treatment with anti-VEGFR2 mAb or combination therapy

significantly inhibited the development of tumour microvessels compared with control (Fig

3B). Furthermore, anti-PD-1 mAb had no effect on tumour neovascularization (Fig 3B). Thus,

PD-1 blockade did not interfere with anticancer treatment targeting tumour angiogenesis.

PD-1 blockade enhanced T cell recruitment into tumours

We next evaluated tumour T cell-infiltrations by immunohistochemistry and quantitative

real-time PCR analysis. Although there were no significant statistical differences, there was a

constant tendency of increase in CD4+ and CD8+ T-cell infiltration in tumour tissues
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treated with anti-PD-1 mAb alone or combination of anti-PD-1 mAb and anti-VEGFR2 mAb

compared to control or anti-VEGFR2 mAb alone (Fig 4). Even though anti-VEGFR2 mAb

disrupted tumour vessels as shown above, T cell infiltration in tumours treated with

anti-VEGFR2 mADb or combination did not decrease. Thus, VEGFR2 blockade did not

abrogate recruitment of T lymphocytes into tumours induced by PD-1 blockade. In addition,

we examined FOXP3 expression in tumours as a marker for regulatory T cells. We found that

FOXP3 expression was not reduced by anti-VEGFR2 treatment and elevated by anti-PD-1

treatment (data not shown).

PD-1 blockade activated local immunity

To analyze local immune status in tumours, we evaluated the several potent pro-inflammatory

cytokines and mediators. Treatment with anti-PD-1 mAb or combination therapy induced

significant increase of expressions of IFN-y, TNF-o, and granzyme B in comparison with

control (Fig 5). Thus, PD-1 blockade enhanced T cell recruitment and activated local immune

status, thereby resulting in tumour reduction. However, VEGFR2 blockade alone did not

induce local immune activation in this model.
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Discussion

This is the first study to investigate the synergistic antitumour effect induced by dual

blockade of PD-1 and VEGFR2. Recent multicenter Phase I clinical trials have shown that

PD-1 or PD-L1 mAbs were safe in patients with various types of cancer and hold promise as

new anticancer agents. However, in order to enhance antitumour efficacy of strategies

targeting PD-1/PD-L pathway, combination therapy may be desirable especially for refractory

tumours such as pancreatic cancer. Since practical reagents targeting PD-1 and VEGF

pathways are currently available, our proposed strategy may have actual clinical relevance.

There are several advantages in dual blockade of completely different pathways. First, the

combination therapy may reduce the harmful effect if they have different profiles of toxicity,

since they can be used at reduced doses while preserving efficacy. This is important because

both PD-1 and VEGFR blockades are thought to cause unique adverse events. For instance, it

is known that PD-1 blockade have a risk to induce autoimmune reactions and diseases [10, 11,

26]. The therapeutic dose of anti-PD-1 Ab may cause significant harmful effect. Its reduced,

but optimal dose can be achieved by the combination therapy. Although we have observed no

overt toxicity in mice during and after treatment, careful observations will be required in
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clinical applications. Second, when combining two reagents that have different properties,

enhanced efficacy may be anticipated because of synergistic interactions. Our data clearly

indicates that synergistic in vivo antitumour effect can be successfully induced by combining

PD-1 and VEGFR2 blockade.

Although the underlying mechanisms are not fully elucidated, several interpretations

may be drawn from our data. First, as expected, anti-VEGFR2 mAb treatment resulted in

significant decrease of tumour microvessels. Reducing tumour vasculature deprives the

tumours of blood supply, thereby leading to the necrosis or apoptosis of tumour cells [19, 21].

This was not observed in tumours treated with anti-PD-1 mAb. Second, anti-PD-1 mAb

treatment enhanced the infiltrations of T cells into tumours. Furthermore, significant increases

of several pro-inflammatory cytokines were also confirmed in tumours treated with anti-PD-1

mAb. Thus, PD-1 blockade induced T cell infiltrations, thereby resulting in local immune

activation against tumours. Interestingly, although tumour vessels were significantly reduced

by VEGFR2 blockade, tumour T cell infiltration was not interfered with the treatment. This

paradoxical phenomenon may be explained by the normalization of tumour vessels induced

by anti-angiogenesis treatment [16]. The normalized tumour vessels restore blood flow and

improve the ability to transport oxygen, anticancer drugs as well as immune cells to the
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tumour [27-30]. Consistent with our data, previous studies investigating the combination of

tumour immunotherapy with antiangiogenic therapy also have shown that anti-angiogenesis

treatment does not impede the infiltrations of immune competent cells into tumours [19, 21,

31]. In addition, since regulatory T cells also selectively express PD-1, it is possible that PD-1

blockade suppressed regulatory T cells and inhibited tumour growth [32]. However, our data

analyzing FOXP3 expression suggested that regulatory T cells did not play a significant role

in this model. Interestingly, there were no direct effects of PD-1 or VEGFR2 blockade on

cancer cell growth as demonstrated by in vitro studies. Therefore, combining PD-1 and

VEGFR2 blockades may exert their antitumour efficacy through controlling tumour

microenvironments by activating tumour—infiltrating lymphocytes and inhibiting tumour

neovascularization. Taken together, anti-angiogenesis strategy may be a good candidate for

combination with immune checkpoint blockade in cancer therapy.

Immunotherapy has long been expected to become a powerful anti-cancer treatment that

can be tumour-specific and less toxic [33]. It includes cancer vaccine and adoptive cell

therapy. However, to date, there are few definitive evidences for their efficacy in clinical

cancers. Besides these conventional immunotherapies, monoclonal antibody-based treatments

of targeting T cell negative regulatory pathways, CTLA-4 and PD-1, have been recently
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introduced and evaluated. A recent large-scale randomized clinical trial demonstrated that

immunotherapy using anti-human CTLA-4 monoclonal antibody improved overall survival in

metastatic melanoma [4]. To our knowledge, that is the first strong evidence that

immunotherapy has worked in actual human cancer. In general, there are many pathways and

mechanisms involved in tumour development and progression. Thus, it may be difficult to

induce complete cure by monotherapy or single anti-cancer method especially for intractable

tumours. Toward future clinical application, other combinational therapy with blockade of

immune checkpoints should be evaluated in order to achieve synergistic antitumour effect and

less systematic toxicity. In fact, several previous preclinical in vivo studies have shown that

the combination of blockade of PD-L1/PD-1 pathway with the simultaneous use of

gemcitabine [8], anti-LAG-3 [34], or anti-TIM3 mAb [35] exerted a significant antitumour

efficacy without overt toxicity. Furthermore, the other immune checkpoints including B7-H3

[36], LAG3 [34], or TIM3 [35] should be also evaluated in the combination of

anti-angiogenesis treatment. In addition, VEGFR1 has become recognized to have unique and

diverse activities including cancer cell survival and migration [37]. Therefore, combination of

PD-1 and VEGFRI1 blockades warrants further investigation.
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Clearly, further studies will be required to achieve definitive conclusions. First,

long-term treatment of combination of PD-1 and VEGFR2 blockade needs to be assessed. In

this study, tumour growth became noticeable after withdrawal of antibody treatment. It may

be desirable that immunotherapy can induce tumour-specific memory cells that prevent

tumour recurrence. Therefore, the sustained beneficial and adverse effects by long-term

administration of both mAbs need to be evaluated. Second, more fundamental mechanistic

studies should be also performed, since some of our data failed to demonstrate statistical

significance.

In conclusion, we have shown for the first time that the combination of PD-1 and

VEGFR2 had induced a synergistic in vivo antitumour effect without overt toxicity. This

unique strategy may have clinical relevance and should have a potential to be evaluated in

future clinical trial.
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Figure legends

Fig. 1. Simultaneous blockade of PD-1 and VEGFR2 induced synergistic antitumour effect
in vivo. BALB/c mice were subcutaneously inoculated with Colon-26 cells and were given
with control rat IgG, anti-PD-1 mAb, anti-VEGFR2 mAb or both mAbs for 5 times (arrow).
Data are presented as mean + standard error of 7-10 mice of each group. *P < 0.05; **P <

0.01.

Fig. 2. PD-1 and VEGFR?2 blockade did not have any direct effect on cancer cell growth in
vitro. A total of 3000 Colon-26 cells were co-cultured with anti-PD-1 mAb, anti-VEGFR2

mADb or control rat IgG for 72 hours, and cell proliferation was determined by MTS assay.

Fig. 3. Treatment with anti-VEGFR2 mAb inhibited tumour neovascularization. (a)
Immunohistochemistry analysis by staining with CD34. Representative tumours from mice
treated with control rat IgG, anti-PD-1 mAb, anti-VEGFR2 mAb, or both mAbs. (b) Tumour
microvessels were counted at 200x magnification. Data are collected from 4-7 mice of each

group. *P < 0.01; **P < 0.001.

Fig. 4. (a) Immunohistochemical staining of CD4+ and (b) CD8+ T cells in tumour tissue at
day 11. Representative pictures of mice for each treatment are shown. PD-1 blockade and
combination treatment seemed to induce more CD4+ and CD8+ T-cell infiltration compared
to control and VEGFR2 blockade. (c) Quantification of tumour-infiltrating CD4+ and (d)

CD8+ T-cells by real time PCR. There was a tendency toward increased T-cell infiltration by
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the treatment of anti-PD-1 mAb and combination treatment. Anti-VEGFR2 mAb treatment did

not interfere with T-cell infiltration. Data are collected from 4-7 mice of each group.

Fig. 5. Expression of IFN-y, TNF-a, and granzyme B was significantly upregulated by
anti-PD-1 mAb or combination mAb treatment compared with control. Treatment of
anti-VEGFR2 mAbD alone did not increase each cytokine expression. Data are collected from

4-7 mice of each group. *P < 0.05.
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